Pictures at QRS 2015

Day 2 (August 4)

HRML: a hybrid relational modelling language

 $AP ::= \text{skip chaos stop } x := e \mid s \mid \text{delay}(\delta)$

 $EQ ::= R(v, \dot{v}) | EQ \text{ init } v_0 | EQ | EQ$

 $P ::= AP | P \sqcap P | P; P | P \triangleleft b(x) \triangleright P | P | P$

EQ until g | when(G) | $\mu X \bullet P(X)$

 $\operatorname{timer} c \bullet P | \operatorname{signal} s \bullet P$

 $g := \text{skip} |s| \text{test} |g \cdot g| g + g$

 $test := true |v \ge e|v \le e|test \land test|test \lor test$

G := g&P|G|G

Marriott

lenovo

Marriott VANCOUVER AIRPORT

Specification animation is a technique for dynamic and visualized demonstration of the system behaviors defined in the specification.

Three expected effects: improving understanding of requirements or designs, strengthening communication, and verifying/validating specifications.

Specification (textural, graphical)

Animation

Dyna. visualized demonstration

- Multi-modal continuous authentication techniques use factors, such as fingerprints, iris and face recognition to continuously authenticate the legitimate user
 - Muncaster and Turk presented an approach to performing continuous, score-level multi-modal authentication based on a weighted sum of scores from each modality
 - A continuous multi-modal biometrics system using a hidden Markov model (HMM) was developed by Sim, et al
 - Shi, et el, used multimodal inputs, such as voice, location, multitouch and motion, to perform continuous user authentication
- These techniques are inherently infeasible due to the requirements of <u>additional hardware in low-cost touch-screen smart devices</u>, and frequent conscious user interactions

School of CIDSE iru A. Fulton School of Engineering

SVM Score distribution Training Set Normal Model - SVM Score Training Set Malicious Model - SVM Score a benigni

Running Example

	H4		J3	
E7				1.000
E8				0
G2				0.707
G3				0.816
G4				0
H2		197		0.500
H3				1.000
H4				0.707
J2				0
J3				0.707
Classification d	false		false	

things retain and France Thomass, J with construction or the light of Sality over York!

Also have easily seen but happen all.

(

Tolga Ayav, Fevzi Belli

Izmir Institute of Technology Dept. of Computer Engineering

5th IEEE International Workshop on Model-Based Verification & Validation Vancouver, August 3-5, 2015

- Cause-Effect Graphs (CEG) assists deriving tests from a given specification given in natural language.
- CEG is constructed by an experienced test engineer.
- Test cases are derived from the graph.
- Myg generation method from CEG is intuition-based.

Prof. Dr. Franz Wotawa / TU Graz General Chair QRS 2016, Vienna, Austria

