Pictures at QRS 2015 ## Day 2 (August 4) ## HRML: a hybrid relational modelling language $AP ::= \text{skip chaos stop } x := e \mid s \mid \text{delay}(\delta)$ $EQ ::= R(v, \dot{v}) | EQ \text{ init } v_0 | EQ | EQ$ $P ::= AP | P \sqcap P | P; P | P \triangleleft b(x) \triangleright P | P | P$ EQ until g | when(G) | $\mu X \bullet P(X)$ $\operatorname{timer} c \bullet P | \operatorname{signal} s \bullet P$ $g := \text{skip} |s| \text{test} |g \cdot g| g + g$ $test := true |v \ge e|v \le e|test \land test|test \lor test$ G := g&P|G|G Marriott lenovo Marriott VANCOUVER AIRPORT Specification animation is a technique for dynamic and visualized demonstration of the system behaviors defined in the specification. Three expected effects: improving understanding of requirements or designs, strengthening communication, and verifying/validating specifications. Specification (textural, graphical) Animation Dyna. visualized demonstration - Multi-modal continuous authentication techniques use factors, such as fingerprints, iris and face recognition to continuously authenticate the legitimate user - Muncaster and Turk presented an approach to performing continuous, score-level multi-modal authentication based on a weighted sum of scores from each modality - A continuous multi-modal biometrics system using a hidden Markov model (HMM) was developed by Sim, et al - Shi, et el, used multimodal inputs, such as voice, location, multitouch and motion, to perform continuous user authentication - These techniques are inherently infeasible due to the requirements of <u>additional hardware in low-cost touch-screen smart devices</u>, and frequent conscious user interactions School of CIDSE iru A. Fulton School of Engineering ## **SVM Score distribution** Training Set Normal Model - SVM Score Training Set Malicious Model - SVM Score a benigni ## Running Example | | H4 | | J3 | | |------------------|-------|-----|-------|-------| | E7 | | | | 1.000 | | E8 | | | | 0 | | G2 | | | | 0.707 | | G3 | | | | 0.816 | | G4 | | | | 0 | | H2 | | 197 | | 0.500 | | H3 | | | | 1.000 | | H4 | | | | 0.707 | | J2 | | | | 0 | | J3 | | | | 0.707 | | Classification d | false | | false | | things retain and France Thomass, J with construction or the light of Sality over York! Also have easily seen but happen all. (Tolga Ayav, Fevzi Belli Izmir Institute of Technology Dept. of Computer Engineering 5th IEEE International Workshop on Model-Based Verification & Validation Vancouver, August 3-5, 2015 - Cause-Effect Graphs (CEG) assists deriving tests from a given specification given in natural language. - CEG is constructed by an experienced test engineer. - Test cases are derived from the graph. - Myg generation method from CEG is intuition-based. Prof. Dr. Franz Wotawa / TU Graz General Chair QRS 2016, Vienna, Austria