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Scalable Software Testing and 

Verification Through Heuristic 

Search and Optimization 
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Verification, Testing 

• The term “verification” is used in its wider sense: Defect 
detection. 

 

• Testing is, in practice, the most common verification 
technique. 

 

• Testing is about systematically, and preferably 
automatically, exercise a system such as to maximize 
chances of uncovering (important) latent faults within time 
constraints.  

 

• Other forms of verifications are important too (e.g., design 
time, run-time), but much less present in practice.  

 

• Decades of research have not yet significantly and widely 
impacted software verification practice. 

 
 

4 



Scalable? Applicable?  

• Scalable: Can a technology be applied on large 

artifacts (e.g., models, data sets, input spaces) and 

still provide useful support within reasonable effort, 

CPU and memory resources? 

 

• Applicable: Can a technology be efficiently and 

effectively applied by engineers in realistic 

conditions?  

– realistic ≠ universal 
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Metaheuristics 

• “A metaheuristic is a heuristic method for solving a 
very general class of computational problems by 
combining user given black-box procedures — 
usually heuristics themselves — in a hopefully 
efficient way.” (Wikipedia) 

 

• Hill climbing, Tabu search, Simulated Annealing, 
Genetic algorithms, Ant colony optimisation …. 

 

• Our research is agnostic to any specific technology 
but is driven by problems – the use of metaheuristics 
is however a recurring pattern. Why? 
 

 7 



Talk Outline 

 

• Selected project examples, with industry 

collaborations 

 

• Similarities and patterns 

 

• Lessons learned 
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Testing Software Controllers 
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Electronic Control Units (ECUs) 

More functions 

Comfort and variety 

Safety and reliability 

Faster time-to-market 

Less fuel consumption 

Greenhouse gas emission laws 
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Dynamic Continuous Controllers 
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A Taxonomy of Automotive Functions 

Controlling Computation 

State-Based Continuous Transforming Calculating 

unit convertors calculating positions,  

duty cycles, etc  

State machine 

controllers 
Closed-loop 

controllers (PID) 

Different testing strategies are required for 

different types of functions 
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Development Process 
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H ardw are-in-the-Loop 
S tage

M odel-in-the-Loop  
S tage

Simulink Modeling

 Generic 

Functional

Model

M iL Testing

S oftw are-in-the-Loop 
S tage

Code Generation

and Integration

Software Running 

on ECU

S iL Testing

 Software

Release

H iL Testing



MATLAB/Simulink model 

Fibonacci sequence: 1,1,2,3,5,8,13,21,… 
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Controller Input and Output at MIL 

Initial

Desired Value

Final

Desired Value

time time

Desired Value

Actual Value
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Test Input Test Output 

15 



Controllers at MIL 
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Inputs: Time-dependent variables 

Configuration Parameters 



Requirements and Test Objectives 
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Test Strategy: A Search-Based Approach 
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Worst Case(s)? 

• Continuous behavior 

• Controller’s behavior can 
be complex 

• Meta-heuristic search in 
(large) input space: 
Finding worst case inputs 

• Possible because of 
automated oracle 
(feedback loop) 

• Different worst cases for 
different requirements 

• Worst cases may or may 
not violate requirements 
 

 

 

 



Smoothness Objective Functions: OSmoothness 

Test Case A Test Case B 

OSmoothness(Test Case A) > OSmoothness(Test Case B)  

We want to find test scenarios which maximize OSmoothness 
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Search Elements 

• Search Space: 

• Initial and desired values, configuration parameters 

 

• Search Technique: 

• (1+1) EA, variants of hill climbing, GAs … 

 

• Search Objective:  

• Objective/fitness function for each requirement 

 

• Evaluation of Solutions 

• Simulation of Simulink model => fitness computation 

 

 

 

 

• Result:  

• Worst case scenarios or values to the input variables that (are 

more likely to) break the requirement at MiL level 

• Stress test cases based on actual hardware (HiL)  
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Solution Overview (Simplified Version) 
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H eatM ap 
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Automotive Example 

• Supercharger bypass flap controller 

Flap position is bounded within [0..1] 

Implemented in MATLAB/Simulink 

34 sub-components decomposed into  6 

abstraction levels 

The simulation time T=2 seconds 

Flap position = 0 

(open) 

Flap position = 1 (closed) 
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Finding Seeded Faults 
Inject Fault 
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Analysis – Fitness increase over iterations 

24 

Number of Iterations 

F
it
n
e
s
s
 



Analysis II – Search over different regions 
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• We found much worse scenarios during MiL testing than our 

partner had found so far, and much worse than random 

search (baseline) 

• These scenarios are also run at the HiL level, where testing is 

much more expensive: MiL results -> test selection for HiL 

• But further research was needed: 

– Simulations are expensive  

– Configuration parameters   

– Dynamically adjust search algorithms in different 

subregions (exploratory <-> exploitative) 

 

 

Conclusions 

i.e.,31s.H ence,the horizontalaxis ofthe diagram s in Figure 8 show s the num ber of
iterations instead ofthe com putation tim e.In addition,w e startboth random search and
(1+1)EA from the sam e initialpoint,i.e.,the w orstcase from the exploration step.

O verallin allthe regions,(1+1)EA eventually reaches its plateau ata value higher
than the random search plateau value.Further,(1+1)EA ism ore determ inistic than ran-
dom ,i.e.,the distribution of(1+1)EA hasasm allervariance than thatofrandom search,
especially w hen reaching the plateau (see Figure 8).In som e regions(e.g.,Figure 8(d)),
how ever,random reaches its plateau slightly fasterthan (1+1)EA ,w hile in som e other
regions (e.g.Figure 8(a)),(1+1)EA is faster.W e w illdiscuss the relationship betw een
the region landscape and the perform ance of(1+1)EA in R Q 3.
R Q 3.W e drew the landscape forthe 11 regions in ourexperim ent.Forexam ple,Fig-
ure 9 show sthe landscape fortw o selected regionsin Figures7(a)and 7(b).Specifically,
Figure 9(a)show s the landscape forthe region in Figure 7(b)w here (1+1)EA is faster
than random ,and Figure 9(b)show s the landscape forthe region in Figure 7(a)w here
(1+1)EA is slow erthan random search.
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Fig.9.D iagram s representing the landscape for tw o representative H eatM ap regions:(a) Land-
scape forthe region in Figure 7(b).(b)Landscape forthe region in Figure 7(a).

O urobservations show thatthe regions surrounded m ostly by dark shaded regions
typically have a cleargradientbetw een the initialpointofthe search and the w orstcase
point(see e.g.,Figure 9(a)).H ow ever,dark regions located in a generally lightshaded
area have a noisiershape w ith severallocaloptim um (see e.g.,Figure 9(b)).Itisknow n
thatforregionslike Figure 9(a),exploitative search w orksbest,w hile forthose like Fig-
ure 9(b),explorative search is m ostsuitable [10].This is confirm ed in ourw ork w here
forFigure 9(a),ourexploitative search,i.e.,(1+1)EA w ith σ = 0.01,isfasterand m ore
effective than random search,w hereasforFigure 9(b),oursearch isslow erthan random
search.W e applied a m ore explorative version of(1+1)EA w here w e letσ = 0.03 to the
region in Figure 9(b).The result(Figure 10)show s thatthe m ore explorative (1+1)EA
isnow both fasterand m ore effective than random search.W e conjecture that,from the
H eatM ap diagram s,w e can predictw hich search algorithm to use for the single-state
search step.Specifically,fordark regions surrounded by dark shaded areas,w e suggest
an exploitative (1+1)EA (e.g.,σ = 0.01),w hile fordark regions located in lightshaded
areas,w e recom m end a m ore explorative (1+1)EA (e.g.,σ = 0.03).

6 R elated W ork
Testing continuous controlsystem s presents a num berofchallenges,and isnotyetsup-
ported by existing toolsand techniques[4,1,3].The m odeling languagesthathave been
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Testing in the Configuration Space 

• MIL testing for all feasible configurations 

 

• The search space is much larger 

 

• The search is much slower (Simulations of Simulink 
models are expensive) 

 

• Results are harder to visualize 

 

• Not all configuration parameters matter for all 
objective functions 
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Modified Process and Technology 

28 

Visualization of the  

8-dimension space  

using regression trees Dimensionality  

reduction to identify  

the significant variables 
Surrogate modeling  

to predict the objective  

function and  

speed up the search  



A Taxonomy of Automotive Functions 

Controlling Computation 

State-Based Continuous Transforming Calculating 

unit convertors calculating positions,  

duty cycles, etc  

State machine 

controllers 
Closed-loop 

controllers (PID) 

Different testing strategies are required for 

different types of functions 
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Differences with Close-Loop Controllers  

39 

• Mixed discrete-continuous 
behavior: Simulink stateflows 

 

• Much quicker simulation time 

 

• No feedback loop -> no 
automated oracle 

 

• The main testing cost is the 
manual analysis of output 
signals 

 

• Goal: Minimize test suites 

 

• Challenge: Test selection 

 

• Entirely different approach to 
testing 

 

 
 

 

 



Selection Strategies 

• Adaptive Random Selection 

• White-box Structural Coverage 

• State Coverage 

• Transition Coverage 

• Output Diversity 

• Failure-Based Selection Criteria (search) 

• Domain specific failure patterns 

• Output Stability 

• Output Continuity 
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Stability 
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Continuity 
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Minimizing CPU Shortage Risks 

During Integration  
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Automotive: Distributed Development 
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Software Integration 
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• Develop software optimized for 

their specific hardware 

 

• Provide part suppliers with 

runnables (exe) 

 

• Integrate car makers software 

with their own platform 

 

• Deploy final software on ECUs 

and send them to car makers   

Car Makers Part Suppliers 

Stakeholders 
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• Objective: Effective execution and 

synchronization of runnables 

 

• Some runnables should execute 

simultaneously or in a certain order 

• Objective: Effective usage of 

CPU time 

 

• Max CPU time used by all the 

runnables should remain as low 

as possible over time 

Car Makers Part Suppliers 

Different Objectives 
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An overview of an integration process in the  

automotive domain 

AUTOSAR Models 
sw runnables 

sw runnables 
AUTOSAR Models 

Glue 
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CPU time shortage 

• Static cyclic scheduling: predictable, analyzable 

• Challenge 
– Many OS tasks and their many runnables run within a limited 

available CPU time  
• The execution time of the runnables may exceed their time slot 

• Our goal 
– Reducing the maximum CPU time used per time slot to be 

able to 
• Minimize the hardware cost 

• Reduce the probability of overloading the CPU in practice 

• Enable addition of new functions incrementally  
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5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 

  

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 

  

(a)

(b)

Fig.4. Tw o possible C PU tim e usage sim ulations foran O S task w ith a 5m s
cycle:(a) U sage w ith bursts,and (b) D esirable usage.

its corresponding glue code starts by a set of declarations
and definitions for com ponents, runnables, ports, etc. It then
includes the initialization partfollow ed by the execution part.
In the execution part, there is one routine for each O S task.
These routines are called by the scheduler of the underlying
O S in every cycle of their corresponding task. Inside each
O S task routine, the runnables related to that O S task are
called based on their period. For exam ple, in Figure 3, w e
assum e that the cycle of the task o1 is 5m s, and the period
of the runnables r1,r2,and r3 are 10m s,20m s and 100m s,
respectively.The value oftim eristhe globalsystem tim e.Since
the cycle of o1 is 5,the value of tim er in the Task o1() routine
is alw ays a m ultiple of 5. R unnables r1, r2 and r3 are then
called w henever the value of tim er is zero, or is divisible by
the period of r1,r2 and r3,respectively.

A lthough A U TO SA R provides a standard m eans forO EM s
and suppliers to exchange their softw are, and essentially
enables the process in Figure 1, the autom otive integration
process still rem ains com plex and erroneous. A m ajor inte-
gration challenge is to m inim ize the risk of C PU shortage
w hile running the integrated system in Figure 1.Specifically,
consider an O S task w ith a 5m s cycle. Figure 4 show s tw o
possible C PU tim e usage sim ulations of this task over eight
tim e slots betw een 0 to 40m s.In Figure 4(a),there are bursts
ofhigh C PU usage attw o tim e slots at0m s and 35m s,w hile
the C PU usage sim ulation in Figure 4(b) is m ore stable and
does not include any bursts. In both sim ulations, the total
C PU usage is the sam e,butthe distribution of the C PU usage
over tim e slots is different. The sim ulation in Figure 4(b) is
m ore desirable because: (1) It m inim izes the hardw are costs
by low ering the m axim um required C PU tim e.(2)Itfacilitates
the assignm ent of new runnables to an O S task, and hence,
enables the addition ofnew functions as itis typically done in
the increm entaldesign ofcarm anufacturers.(3)Itreduces the
possibility of overloading C PU as the C PU tim e usage is less
likely to exceed the O S task cycle (i.e.,5m s)in any tim e slot.
Ideally, a C PU usage sim ulation is desirable if in each tim e
slot,there is a sufficiently large safety m argin of unused C PU
tim e. D ue to inaccuracies in estim ating runnables’execution
tim es,itis expected thatthe unused m argin shrinks w hen the
system runs in a realcar.H ence,the larger is this m argin,the
low er is the probability of exceeding the lim it in practice.

In this paper, w e study the problem of m inim izing bursts
of C PU tim e usage for a softw are system com posed of a
large num ber of concurrent runnables. A know n strategy to
elim inate high C PU usage bursts is to shift the start tim e
(offset) of runnables,i.e.,to inserta delay prior to the startof
the execution of runnables [5].O ffsets of the runnables m ust
satisfy three constraints:C 1.The offsetvalues should notlead

to deadline m isses,i.e.,they should notcause the runnables to
run passed their periods.C 2.Since the runnables are invoked
by O S tasks, the offset values of each runnable should be
divisible by the O S task cycle related to thatrunnable.C 3.The
offset values should not interfere w ith data dependency and
synchronization relations betw een runnables. For exam ple,
suppose runnables r1 and r2 have to execute in the sam e tim e
slotbecause they need to synchronize.The offsetvalues ofr1
and r2 should be chosen such that they still run in the sam e
tim e slotafter being shifted by their offsets.
There are fourim portantcontextfactors thatare in line w ith

A U TO SA R [13],and have influenced our w ork:

C F1. The runnables are not m em ory-bound, i.e., the C PU
tim e is not significantly affected by the low -bound m em ory
allocation activities such as transferring data in and out of
the disk and garbage collection.H ence,our analysis of C PU
tim e usage is not affected by constraints related to m em ory
resources (see Section III-B ).
C F2.The runnables are O ffset-free [4],thatis the offsetof

a runnable can be freely chosen as long as itdoes notviolate
the tim ing constraints C 1-C 3 (see Section III-B ).
C F3. The runnables assigned to different O S tasks are

independent in the sense that they do not com m unicate w ith
one another and do not share m em ory.H ence,the C PU tim e
used by an O S task during each cycle is notaffected by other
O S tasks running concurrently. O ur analysis in this paper,
therefore,focuses on individualO S tasks.
C F4.The execution tim es of the runnables are rem arkably

sm aller than the runnables’periods and the O S task cycles.
TypicalO S task cyclesare around 1m s to 5m s.The runnables’
periods are typically betw een 10m s to 1s,w hile the runnables’
execution tim es are betw een 10ns = 10− 5m s to 0.2m s.

O ur goal is to com pute offsets for runnables such that the
C PU usage is m inim ized, and further,the tim ing constraints,
C 1-C 3, discussed earlier above hold. This requires solving
a constraint-based optim ization problem ,and can be done in
three w ays:(1) A ttem pting to predictoptim aloffsets in a de-
term inistic w ay,e.g.,algorithm s based on real-tim e scheduling
theory [6].In general, these algorithm s explore a very sm all
part of the search space, i.e., w orst/best case situations only
(see Section V for a discussion).(2) Form ulating the problem
as a (sym bolic) constraint m odel and applying a system atic
constraint solver [14], [15]. D ue to assum ption C F4 above,
the search space in our problem is too large, resulting in
a huge constraint m odel that does not fit in m em ory (see
Section V for m ore details). (3) U sing m etaheuristic search-
based techniques [9].These techniques are partofthe general
class of stochastic optim ization algorithm s w hich em ploy
som e degree of random ness to find optim al (or as optim al
as possible) solutions to hard problem s.These approaches are
applied to a w ide range ofproblem s,and are used in this paper.

III. SE A R C H -B A SE D C PU U SA G E M IN IM IZ A T IO N

In this section,w e describe our search-based technique for
C PU usage m inim ization. W e first define a notation for our
problem in Section III-A .W e form alize the tim ing constraints,
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Using runnable offsets (delay times) 

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms ✗ 

✔ 

Inserting runnables’ offsets 

Offsets have to be chosen such that 

the maximum CPU usage per time slot is minimized, and further, 

 the runnables respect their period 

 the runnables respect their time slot 

 the runnables satisfy their synchronization constraints 
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Search  algorithms 

Case Study: an automotive software system with 430 runnables, 

search space = 10^27 

Running the system without offsets 

Simulation for the runnables in our case study and

corresponding to the lowest max CPU usage found by HC

5.34 ms 

Optimized offset assignment 

2.13 ms 

- The objective function is the max CPU usage of a 2s-simulation of 

runnables 

- The search modifies one offset at a time, and updates other offsets 

only if timing constraints are violated 

- Single-state search algorithms for discrete spaces (HC, Tabu) 
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4ms 

3ms 

2ms 

Car Makers Part Suppliers 

1 slot 

2 slots 

3 slots 

Trade-off between Objectives 
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Trade-off curve 
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Multi-objective search 

• Multi-objective genetic algorithms (NSGA II) 

• Supporting decision making and negotiation between 

stakeholders 

60 
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Objectives:  

• (1) Max CPU time  

• (2) Maximum time 

slots between 

“dependent” tasks  
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Conclusions 

- Search algorithms to compute 

offset values that reduce the 

max CPU time needed 

- Generate reasonably good 

results for a large automotive 

system and in a small amount 

of time  

- Used multi-objective search  

tool for establishing trade-off 

between relaxing 

synchronization constraints and 

maximum CPU time usage 
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Schedulability Analysis and Stress 

Testing  
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Problem 

• Schedulability analysis encompasses techniques 
that try to predict whether all (critical) tasks are 
schedulable, i.e., meet their deadlines 

• Stress testing runs carefully selected test cases 
that have a high probability of leading to deadline 
misses 

• Stress testing is complementary to schedulability 
analysis 

• Testing is typically expensive, e.g., hardware in 
the loop 

• Finding stress test cases is difficult 
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Finding Stress Test Cases is Difficult 
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Challenges and Solutions 

• Ranges for arrival times form a very large input space 

 

• Task interdependencies and properties constrain 

what parts of the space are feasible 

 

• We re-expressed the problem as a constraint 

optimisation problem 

 

• Constraint programming (e.g., IBM CPLEX) 
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Context 

68 

Drivers 

(Software-Hardware Interface) 

Control Modules 

Alarm Devices 

(Hardware) 

Multicore Architecture  

 

Real-Time Operating System 

 

System monitors gas leaks and fire in 

oil extraction platforms 



Constraint Optimization 
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Constraint Optimization Problem 

Static Properties of Tasks 

(Constants) 

Dynamic Properties of Tasks 

(Variables) 

Performance Requirement 

(Objective Function) 

OS Scheduler Behaviour 

(Constraints) 



Process and Technologies 
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UML Modeling (e.g., MARTE) 

Constraint Optimization 

Optimization Problem 

(Find arrival times that maximize the chance of 

deadline misses) 

System Platform 

Solutions 

(Task arrival times likely to lead to 

deadline misses) 

Deadline Misses Analysis 

System Design 
Design Model (Time and 

Concurrency Information) 

INPUT 

OUTPUT 

Stress Test Cases 

Constraint  

Programming (CP) 



Challenges and Solutions 

• Scalability problem: Constraint programming (e.g., 

IBM CPLEX) cannot handle such large input spaces 

(CPU, memory) 

 

• Solution: Combine metaheuristic search and 

constraint programming 

– metaheuristic search identifies high risk regions in 

the input space  

– constraint programming finds provably worst-case 

schedules within these (limited) regions 

– Achieve (nearly) GA efficiency and CP 

effectiveness 
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Combining CP and GA 
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Environment-Based Testing  

of Soft Real-Time Systems 
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Objectives 

• Model-based system testing 

– Independent test team 

– Black-box 

– Environment models 
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Environment 

Simulator 

Test cases 

Environment Models 

Test oracle 



Environment: Domain Model 
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Environment: Behavioral Model 
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Test Case Generation 

• Test objectives: Reach “error” states (critical environment 

states) 

• Test Case: (1) Environment  and (2) Simulation Configuration 

– (1) Number of instances for each component in domain model, 

e.g., number of items on conveying belt 

– (2) Setting non-deterministic properties of the environment, 

e.g., speed of sorter’s left and right arms 

• Oracle: Reaching an “error” state 

• Metaheuristics: search for test cases getting to error state 

• Fitness function 

– Distance from error state 

– Distance from satisfying guard conditions 

– Time distance 

– Time in “risky” states 
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Stress Testing focused on 

Concurrency Faults 

 
Reference: 
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M. Shousha et al., ”A UML/MARTE Model Analysis Method for 

Uncovering Scenarios Leading to Starvation and Deadlocks in 

Concurrent Systems”, IEEE Transactions on Software Engineering 

38(2), 2012  

 



Stress Testing of Distributed Systems 

 
Reference: 
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V. Garousi et al., "Traffic-aware Stress Testing of Distributed Real-Time 

Systems Based on UML Models using Genetic Algorithms", Journal of 

Systems and Software (Elsevier), 81(2), 2008  
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Objective 
Function 

Search 
Space 

Search 
Technique 

 Search to optimize 
objective function  

 Metaheuristics, 
constraint programming 

 Scalability: A small part 
of the search space is 
traversed 

 Model: Guidance to 
worst case, high risk 
scenarios across space 

 Reasonable modeling 
effort based on 
standards or extension 

 Heuristics: Extensive 
empirical studies are 
required 

General Pattern: Using Metaheuristics 



Scalability 
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Project examples 

• Scalability is the most common verification challenge in 

practice 

 

• Testing closed-loop controllers 

– Large input and configuration space 

– Smart heuristics to avoid simulations (machine 

learning) 

• Schedulability analysis and stress testing 

– Large space of possible arrival times 

– Constraint programming cannot scale by itself 

– CP was carefully combined with genetic algorithms 
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Scalability: Lessons Learned 

• Scalability must be part of the problem definition and 

solution from the start, not a refinement or an after-

thought 

• Meta-heuristic search, by necessity, has been an essential 

part of the solutions, along with, in some cases, machine 

learning, statistics, etc.  

• Scalability often leads to solutions that offer “best 

answers” within time constraints, but no guarantees 

• Scalability analysis should be a component of every 

research project – otherwise it is unlikely to be adopted in 

practice 

• How many papers research papers do include even a 

minimal form of scalability analysis? 
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Applicability 
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Project examples 

• Applicability requires to account for the domain and context 

 

• Testing controllers 

– Relies on Simulink only 

– No additional modeling or complex translation 

– Within domains, differences have huge implications in terms 
of applicability (open versus closed loop controllers) 

• Minimizing risks of CPU shortage 

– Trade-off between between effective synchronisation and 
CPU usage 

– Trade-off achieved through multiple objective GA search and 
appropriate decision tool 

• Schedulability analysis and stress testing 

– Near deadline misses must be identified 
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Applicability: Lessons Learned 

• In software engineering, and verification in particular, 

just understanding the real problems in real contexts 

is difficult 

• What are the inputs required by the proposed 

technique? 

• How does it fit in development practices? 

• Is the output what engineers require to make 

decisions? 

• There is no unique solution to a problem as they tend 

to be context dependent, but a context is rarely 

unique and often representative of a domain 

 

 

 

87 



Discussion 

• Metaheuristic search  

– Tends to be versatile, easy to tailor to a new problem 

– Entails acceptable modeling requirements 

– Can provide “best” answers at any time 

– Scalable 

But 

– Not a proof, no certainty 

– Though in practice (complex) models are not fully correct, 

there is no certainty anyway 

– Effectiveness of search guidance is key and must be 

experimented and evaluated 

– Models are key to provide adequate guidance 
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Talk Summary 

• Focus: Meta-heuristic Search to enable scalable 
verification and testing. 

• Scalability is the main challenge in practice. 

• Drew lessons learned from example projects in 
collaboration with industry, on real systems and in real 
verification contexts. 

• Results show that meta-heuristic search contributes to 
mitigate the scalability problem. 

• It has shown to lead to applicable solutions in practice. 

• Solutions are very context dependent. 

• It is usually combined with a variety of other 
complementary techniques: system modeling, 
constraint solving, machine learning, statistics.  
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