
Scalable Software Testing and Verification

Through Heuristic Search and Optimization:

Experiences and Lessons Learned

Lionel Briand

Interdisciplinary Centre for ICT Security, Reliability, and Trust (SnT)

University of Luxembourg, Luxembourg

QRS, Vancouver, August 3, 2015

Acknowledgements

PhD. Students:

• Vahid Garousi

• Marwa Shousha

• Zohaib Iqbal

• Reza Matinnejad

• Stefano Di Alesio

Scientists:

• Shiva Nejati

• Andrea Arcuri

• Yvan Labiche

• Arnaud Gotlieb

 2

Scalable Software Testing and

Verification Through Heuristic

Search and Optimization

3

Verification, Testing

• The term “verification” is used in its wider sense: Defect
detection.

• Testing is, in practice, the most common verification
technique.

• Testing is about systematically, and preferably
automatically, exercise a system such as to maximize
chances of uncovering (important) latent faults within time
constraints.

• Other forms of verifications are important too (e.g., design
time, run-time), but much less present in practice.

• Decades of research have not yet significantly and widely
impacted software verification practice.

4

Scalable? Applicable?

• Scalable: Can a technology be applied on large

artifacts (e.g., models, data sets, input spaces) and

still provide useful support within reasonable effort,

CPU and memory resources?

• Applicable: Can a technology be efficiently and

effectively applied by engineers in realistic

conditions?

– realistic ≠ universal

5

Metaheuristics

• “A metaheuristic is a heuristic method for solving a
very general class of computational problems by
combining user given black-box procedures —
usually heuristics themselves — in a hopefully
efficient way.” (Wikipedia)

• Hill climbing, Tabu search, Simulated Annealing,
Genetic algorithms, Ant colony optimisation ….

• Our research is agnostic to any specific technology
but is driven by problems – the use of metaheuristics
is however a recurring pattern. Why?

 7

Talk Outline

• Selected project examples, with industry

collaborations

• Similarities and patterns

• Lessons learned

8

Testing Software Controllers

References:

9

• R. Matinnejad et al., “Effective Test Suites for Mixed Discrete-Continuous Stateflow

Controllers”, ACM ESEC/FSE 2015

• R. Matinnejad et al., “MiL Testing of Highly Configurable Continuous Controllers:

Scalable Search Using Surrogate Models”, IEEE/ACM ASE 2014

• R. Matinnejad et al., “Search-Based Automated Testing of Continuous Controllers:

Framework, Tool Support, and Case Studies”, Information and Software Technology,

Elsevier (2014)

Electronic Control Units (ECUs)

More functions

Comfort and variety

Safety and reliability

Faster time-to-market

Less fuel consumption

Greenhouse gas emission laws

10

Dynamic Continuous Controllers

11

A Taxonomy of Automotive Functions

Controlling Computation

State-Based Continuous Transforming Calculating

unit convertors calculating positions,

duty cycles, etc

State machine

controllers
Closed-loop

controllers (PID)

Different testing strategies are required for

different types of functions

12

Development Process

13

H ardw are-in-the-Loop
S tage

M odel-in-the-Loop
S tage

Simulink Modeling

 Generic

Functional

Model

M iL Testing

S oftw are-in-the-Loop
S tage

Code Generation

and Integration

Software Running

on ECU

S iL Testing

 Software

Release

H iL Testing

MATLAB/Simulink model

Fibonacci sequence: 1,1,2,3,5,8,13,21,…

14

Controller Input and Output at MIL

Initial

Desired Value

Final

Desired Value

time time

Desired Value

Actual Value

T/2 T T/2 T

Test Input Test Output

15

Controllers at MIL

16

Inputs: Time-dependent variables

Configuration Parameters

Requirements and Test Objectives

17

In
it
ia
l
D
e
s
ir
e
d

(I
D
)

Desired ValueI (input)

Actual Value (output)

F
in
a
l
D
e
s
ir
e
d

(F
D
)

tim e
T/2 T

S m oothness

R esponsiveness

S tability

Test Strategy: A Search-Based Approach

18

Initial Desired (ID)

F
in

a
l
D

e
s
ir

e
d

 (
F

D
)

Worst Case(s)?

• Continuous behavior

• Controller’s behavior can
be complex

• Meta-heuristic search in
(large) input space:
Finding worst case inputs

• Possible because of
automated oracle
(feedback loop)

• Different worst cases for
different requirements

• Worst cases may or may
not violate requirements

Smoothness Objective Functions: OSmoothness

Test Case A Test Case B

OSmoothness(Test Case A) > OSmoothness(Test Case B)

We want to find test scenarios which maximize OSmoothness

19

20

Search Elements

• Search Space:

• Initial and desired values, configuration parameters

• Search Technique:

• (1+1) EA, variants of hill climbing, GAs …

• Search Objective:

• Objective/fitness function for each requirement

• Evaluation of Solutions

• Simulation of Simulink model => fitness computation

• Result:

• Worst case scenarios or values to the input variables that (are

more likely to) break the requirement at MiL level

• Stress test cases based on actual hardware (HiL)

20

Solution Overview (Simplified Version)

21

H eatM ap
D iagram

1. E xploration

time

Desired Value

Actual Value

0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Initial Desired

Final Desired

Automotive Example

• Supercharger bypass flap controller

Flap position is bounded within [0..1]

Implemented in MATLAB/Simulink

34 sub-components decomposed into 6

abstraction levels

The simulation time T=2 seconds

Flap position = 0

(open)

Flap position = 1 (closed)
22

Finding Seeded Faults
Inject Fault

23

Analysis – Fitness increase over iterations

24

Number of Iterations

F
it
n
e
s
s

Analysis II – Search over different regions

25

0.315

0.316

0.317

0.319

0.321

0.323

0.324

0.326

0.327

0.329

0.330

0 10 20 30 40 50 60 70 80 90 100

0.328

0.325

0.320

0.318

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

Random Search

(1+1) EA

0 10 20 30 40 50 60 70 80 90 100

0.0166

0.0168

0.0170

0.0176

0.0180

0.0178

0.0172

0.0160

0.0162

0.0164 Random Search

(1+1) EA

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

0.0174

Average (1+1) EA Distribution Random Search Distribution

Number of Iterations

• We found much worse scenarios during MiL testing than our

partner had found so far, and much worse than random

search (baseline)

• These scenarios are also run at the HiL level, where testing is

much more expensive: MiL results -> test selection for HiL

• But further research was needed:

– Simulations are expensive

– Configuration parameters

– Dynamically adjust search algorithms in different

subregions (exploratory <-> exploitative)

Conclusions

i.e.,31s.H ence,the horizontalaxis ofthe diagram s in Figure 8 show s the num ber of
iterations instead ofthe com putation tim e.In addition,w e startboth random search and
(1+1)EA from the sam e initialpoint,i.e.,the w orstcase from the exploration step.

O verallin allthe regions,(1+1)EA eventually reaches its plateau ata value higher
than the random search plateau value.Further,(1+1)EA ism ore determ inistic than ran-
dom ,i.e.,the distribution of(1+1)EA hasasm allervariance than thatofrandom search,
especially w hen reaching the plateau (see Figure 8).In som e regions(e.g.,Figure 8(d)),
how ever,random reaches its plateau slightly fasterthan (1+1)EA ,w hile in som e other
regions (e.g.Figure 8(a)),(1+1)EA is faster.W e w illdiscuss the relationship betw een
the region landscape and the perform ance of(1+1)EA in R Q 3.
R Q 3.W e drew the landscape forthe 11 regions in ourexperim ent.Forexam ple,Fig-
ure 9 show sthe landscape fortw o selected regionsin Figures7(a)and 7(b).Specifically,
Figure 9(a)show s the landscape forthe region in Figure 7(b)w here (1+1)EA is faster
than random ,and Figure 9(b)show s the landscape forthe region in Figure 7(a)w here
(1+1)EA is slow erthan random search.

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

(a) (b)

Fig.9.D iagram s representing the landscape for tw o representative H eatM ap regions:(a) Land-
scape forthe region in Figure 7(b).(b)Landscape forthe region in Figure 7(a).

O urobservations show thatthe regions surrounded m ostly by dark shaded regions
typically have a cleargradientbetw een the initialpointofthe search and the w orstcase
point(see e.g.,Figure 9(a)).H ow ever,dark regions located in a generally lightshaded
area have a noisiershape w ith severallocaloptim um (see e.g.,Figure 9(b)).Itisknow n
thatforregionslike Figure 9(a),exploitative search w orksbest,w hile forthose like Fig-
ure 9(b),explorative search is m ostsuitable [10].This is confirm ed in ourw ork w here
forFigure 9(a),ourexploitative search,i.e.,(1+1)EA w ith σ = 0.01,isfasterand m ore
effective than random search,w hereasforFigure 9(b),oursearch isslow erthan random
search.W e applied a m ore explorative version of(1+1)EA w here w e letσ = 0.03 to the
region in Figure 9(b).The result(Figure 10)show s thatthe m ore explorative (1+1)EA
isnow both fasterand m ore effective than random search.W e conjecture that,from the
H eatM ap diagram s,w e can predictw hich search algorithm to use for the single-state
search step.Specifically,fordark regions surrounded by dark shaded areas,w e suggest
an exploitative (1+1)EA (e.g.,σ = 0.01),w hile fordark regions located in lightshaded
areas,w e recom m end a m ore explorative (1+1)EA (e.g.,σ = 0.03).

6 R elated W ork
Testing continuous controlsystem s presents a num berofchallenges,and isnotyetsup-
ported by existing toolsand techniques[4,1,3].The m odeling languagesthathave been

13

26

Testing in the Configuration Space

• MIL testing for all feasible configurations

• The search space is much larger

• The search is much slower (Simulations of Simulink
models are expensive)

• Results are harder to visualize

• Not all configuration parameters matter for all
objective functions

27

Modified Process and Technology

28

Visualization of the

8-dimension space

using regression trees Dimensionality

reduction to identify

the significant variables
Surrogate modeling

to predict the objective

function and

speed up the search

A Taxonomy of Automotive Functions

Controlling Computation

State-Based Continuous Transforming Calculating

unit convertors calculating positions,

duty cycles, etc

State machine

controllers
Closed-loop

controllers (PID)

Different testing strategies are required for

different types of functions

38

Differences with Close-Loop Controllers

39

• Mixed discrete-continuous
behavior: Simulink stateflows

• Much quicker simulation time

• No feedback loop -> no
automated oracle

• The main testing cost is the
manual analysis of output
signals

• Goal: Minimize test suites

• Challenge: Test selection

• Entirely different approach to
testing

Selection Strategies

• Adaptive Random Selection

• White-box Structural Coverage

• State Coverage

• Transition Coverage

• Output Diversity

• Failure-Based Selection Criteria (search)

• Domain specific failure patterns

• Output Stability

• Output Continuity

40

Stability

41

Continuity

42

Minimizing CPU Shortage Risks

During Integration

References:

43

• S. Nejati et al., ‘‘Minimizing CPU Time Shortage Risks in Integrated Embedded

Software’’, in 28th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2013), 2013

• S. Nejati, L. Briand, “Identifying Optimal Trade-Offs between CPU Time Usage and

Temporal Constraints Using Search”, ACM International Symposium on Software

Testing and Analysis (ISSTA 2014), 2014

Automotive: Distributed Development

44

Software Integration

45

• Develop software optimized for

their specific hardware

• Provide part suppliers with

runnables (exe)

• Integrate car makers software

with their own platform

• Deploy final software on ECUs

and send them to car makers

Car Makers Part Suppliers

Stakeholders

46

• Objective: Effective execution and

synchronization of runnables

• Some runnables should execute

simultaneously or in a certain order

• Objective: Effective usage of

CPU time

• Max CPU time used by all the

runnables should remain as low

as possible over time

Car Makers Part Suppliers

Different Objectives

47

An overview of an integration process in the

automotive domain

AUTOSAR Models
sw runnables

sw runnables
AUTOSAR Models

Glue

48

49

CPU time shortage

• Static cyclic scheduling: predictable, analyzable

• Challenge
– Many OS tasks and their many runnables run within a limited

available CPU time
• The execution time of the runnables may exceed their time slot

• Our goal
– Reducing the maximum CPU time used per time slot to be

able to
• Minimize the hardware cost

• Reduce the probability of overloading the CPU in practice

• Enable addition of new functions incrementally

49

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms

(a)

(b)

Fig.4. Tw o possible C PU tim e usage sim ulations foran O S task w ith a 5m s
cycle:(a) U sage w ith bursts,and (b) D esirable usage.

its corresponding glue code starts by a set of declarations
and definitions for com ponents, runnables, ports, etc. It then
includes the initialization partfollow ed by the execution part.
In the execution part, there is one routine for each O S task.
These routines are called by the scheduler of the underlying
O S in every cycle of their corresponding task. Inside each
O S task routine, the runnables related to that O S task are
called based on their period. For exam ple, in Figure 3, w e
assum e that the cycle of the task o1 is 5m s, and the period
of the runnables r1,r2,and r3 are 10m s,20m s and 100m s,
respectively.The value oftim eristhe globalsystem tim e.Since
the cycle of o1 is 5,the value of tim er in the Task o1() routine
is alw ays a m ultiple of 5. R unnables r1, r2 and r3 are then
called w henever the value of tim er is zero, or is divisible by
the period of r1,r2 and r3,respectively.

A lthough A U TO SA R provides a standard m eans forO EM s
and suppliers to exchange their softw are, and essentially
enables the process in Figure 1, the autom otive integration
process still rem ains com plex and erroneous. A m ajor inte-
gration challenge is to m inim ize the risk of C PU shortage
w hile running the integrated system in Figure 1.Specifically,
consider an O S task w ith a 5m s cycle. Figure 4 show s tw o
possible C PU tim e usage sim ulations of this task over eight
tim e slots betw een 0 to 40m s.In Figure 4(a),there are bursts
ofhigh C PU usage attw o tim e slots at0m s and 35m s,w hile
the C PU usage sim ulation in Figure 4(b) is m ore stable and
does not include any bursts. In both sim ulations, the total
C PU usage is the sam e,butthe distribution of the C PU usage
over tim e slots is different. The sim ulation in Figure 4(b) is
m ore desirable because: (1) It m inim izes the hardw are costs
by low ering the m axim um required C PU tim e.(2)Itfacilitates
the assignm ent of new runnables to an O S task, and hence,
enables the addition ofnew functions as itis typically done in
the increm entaldesign ofcarm anufacturers.(3)Itreduces the
possibility of overloading C PU as the C PU tim e usage is less
likely to exceed the O S task cycle (i.e.,5m s)in any tim e slot.
Ideally, a C PU usage sim ulation is desirable if in each tim e
slot,there is a sufficiently large safety m argin of unused C PU
tim e. D ue to inaccuracies in estim ating runnables’execution
tim es,itis expected thatthe unused m argin shrinks w hen the
system runs in a realcar.H ence,the larger is this m argin,the
low er is the probability of exceeding the lim it in practice.

In this paper, w e study the problem of m inim izing bursts
of C PU tim e usage for a softw are system com posed of a
large num ber of concurrent runnables. A know n strategy to
elim inate high C PU usage bursts is to shift the start tim e
(offset) of runnables,i.e.,to inserta delay prior to the startof
the execution of runnables [5].O ffsets of the runnables m ust
satisfy three constraints:C 1.The offsetvalues should notlead

to deadline m isses,i.e.,they should notcause the runnables to
run passed their periods.C 2.Since the runnables are invoked
by O S tasks, the offset values of each runnable should be
divisible by the O S task cycle related to thatrunnable.C 3.The
offset values should not interfere w ith data dependency and
synchronization relations betw een runnables. For exam ple,
suppose runnables r1 and r2 have to execute in the sam e tim e
slotbecause they need to synchronize.The offsetvalues ofr1
and r2 should be chosen such that they still run in the sam e
tim e slotafter being shifted by their offsets.
There are fourim portantcontextfactors thatare in line w ith

A U TO SA R [13],and have influenced our w ork:

C F1. The runnables are not m em ory-bound, i.e., the C PU
tim e is not significantly affected by the low -bound m em ory
allocation activities such as transferring data in and out of
the disk and garbage collection.H ence,our analysis of C PU
tim e usage is not affected by constraints related to m em ory
resources (see Section III-B).
C F2.The runnables are O ffset-free [4],thatis the offsetof

a runnable can be freely chosen as long as itdoes notviolate
the tim ing constraints C 1-C 3 (see Section III-B).
C F3. The runnables assigned to different O S tasks are

independent in the sense that they do not com m unicate w ith
one another and do not share m em ory.H ence,the C PU tim e
used by an O S task during each cycle is notaffected by other
O S tasks running concurrently. O ur analysis in this paper,
therefore,focuses on individualO S tasks.
C F4.The execution tim es of the runnables are rem arkably

sm aller than the runnables’periods and the O S task cycles.
TypicalO S task cyclesare around 1m s to 5m s.The runnables’
periods are typically betw een 10m s to 1s,w hile the runnables’
execution tim es are betw een 10ns = 10− 5m s to 0.2m s.

O ur goal is to com pute offsets for runnables such that the
C PU usage is m inim ized, and further,the tim ing constraints,
C 1-C 3, discussed earlier above hold. This requires solving
a constraint-based optim ization problem ,and can be done in
three w ays:(1) A ttem pting to predictoptim aloffsets in a de-
term inistic w ay,e.g.,algorithm s based on real-tim e scheduling
theory [6].In general, these algorithm s explore a very sm all
part of the search space, i.e., w orst/best case situations only
(see Section V for a discussion).(2) Form ulating the problem
as a (sym bolic) constraint m odel and applying a system atic
constraint solver [14], [15]. D ue to assum ption C F4 above,
the search space in our problem is too large, resulting in
a huge constraint m odel that does not fit in m em ory (see
Section V for m ore details). (3) U sing m etaheuristic search-
based techniques [9].These techniques are partofthe general
class of stochastic optim ization algorithm s w hich em ploy
som e degree of random ness to find optim al (or as optim al
as possible) solutions to hard problem s.These approaches are
applied to a w ide range ofproblem s,and are used in this paper.

III. SE A R C H -B A SE D C PU U SA G E M IN IM IZ A T IO N

In this section,w e describe our search-based technique for
C PU usage m inim ization. W e first define a notation for our
problem in Section III-A .W e form alize the tim ing constraints,

50

Using runnable offsets (delay times)

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms ✗

✔

Inserting runnables’ offsets

Offsets have to be chosen such that

the maximum CPU usage per time slot is minimized, and further,

 the runnables respect their period

 the runnables respect their time slot

 the runnables satisfy their synchronization constraints

50

55

Search algorithms

Case Study: an automotive software system with 430 runnables,

search space = 10^27

Running the system without offsets

Simulation for the runnables in our case study and

corresponding to the lowest max CPU usage found by HC

5.34 ms

Optimized offset assignment

2.13 ms

- The objective function is the max CPU usage of a 2s-simulation of

runnables

- The search modifies one offset at a time, and updates other offsets

only if timing constraints are violated

- Single-state search algorithms for discrete spaces (HC, Tabu)

55

4ms

3ms

2ms

Car Makers Part Suppliers

1 slot

2 slots

3 slots

Trade-off between Objectives

58

Trade-off curve
#
 o
f

s
l
o
t
s

CPU time usage (ms)
2.04 1.45

12

21

14

1.56

1

2

3

Boundary Trade Offs

Interesting
Solutions

59

Multi-objective search

• Multi-objective genetic algorithms (NSGA II)

• Supporting decision making and negotiation between

stakeholders

60
Number of Slots-NSGAII & Number of Slots-Random

10 15 20 25 30 35 40 45

1.5

2.0

2.5

3.0

Total N um ber of Tim e S lots

M
a
x
 C

P
U
 T
im

e
 U

s
a
g
e
 (
m
s
)

R andom (25,000)
N S G A -II(25,000)

A

B

12

1.45

C

Objectives:

• (1) Max CPU time

• (2) Maximum time

slots between

“dependent” tasks

62

Conclusions

- Search algorithms to compute

offset values that reduce the

max CPU time needed

- Generate reasonably good

results for a large automotive

system and in a small amount

of time

- Used multi-objective search

tool for establishing trade-off

between relaxing

synchronization constraints and

maximum CPU time usage

62

Schedulability Analysis and Stress

Testing

References:

63

• S. Di Alesio et al., “Stress Testing of Task Deadlines: A Constraint Programming

Approach”, IEEE ISSRE 2013, San Jose, USA

• S. Di Alesio et al., “Worst-Case Scheduling of Software Tasks – A Constraint

Optimization Model to Support Performance Testing, Constraint Programming (CP),

2014

• S. Di Alesio er al. “Combining Genetic Algorithms and Constraint Programming to

Support Stress Testing”, ACM TOSEM (forthcoming)

Problem

• Schedulability analysis encompasses techniques
that try to predict whether all (critical) tasks are
schedulable, i.e., meet their deadlines

• Stress testing runs carefully selected test cases
that have a high probability of leading to deadline
misses

• Stress testing is complementary to schedulability
analysis

• Testing is typically expensive, e.g., hardware in
the loop

• Finding stress test cases is difficult

65

Finding Stress Test Cases is Difficult

66

0

1

2

3

4

5

6

7

8

9

j0, j1 , j2 arrive at at0 , at1 , at2 and must

finish before dl0 , dl1 , dl2

J1 can miss its deadline dl1 depending on

when at2 occurs!

0

1

2

3

4

5

6

7

8

9

j0 j1 j2 j0 j1 j2

at0

dl0

dl1

at1 dl2

at2

T

T

at0

dl0 dl1

at1

at2

dl2

Challenges and Solutions

• Ranges for arrival times form a very large input space

• Task interdependencies and properties constrain

what parts of the space are feasible

• We re-expressed the problem as a constraint

optimisation problem

• Constraint programming (e.g., IBM CPLEX)

67

Context

68

Drivers

(Software-Hardware Interface)

Control Modules

Alarm Devices

(Hardware)

Multicore Architecture

Real-Time Operating System

System monitors gas leaks and fire in

oil extraction platforms

Constraint Optimization

69

Constraint Optimization Problem

Static Properties of Tasks

(Constants)

Dynamic Properties of Tasks

(Variables)

Performance Requirement

(Objective Function)

OS Scheduler Behaviour

(Constraints)

Process and Technologies

70

UML Modeling (e.g., MARTE)

Constraint Optimization

Optimization Problem

(Find arrival times that maximize the chance of

deadline misses)

System Platform

Solutions

(Task arrival times likely to lead to

deadline misses)

Deadline Misses Analysis

System Design
Design Model (Time and

Concurrency Information)

INPUT

OUTPUT

Stress Test Cases

Constraint

Programming (CP)

Challenges and Solutions

• Scalability problem: Constraint programming (e.g.,

IBM CPLEX) cannot handle such large input spaces

(CPU, memory)

• Solution: Combine metaheuristic search and

constraint programming

– metaheuristic search identifies high risk regions in

the input space

– constraint programming finds provably worst-case

schedules within these (limited) regions

– Achieve (nearly) GA efficiency and CP

effectiveness

71

Combining CP and GA

72

Environment-Based Testing

of Soft Real-Time Systems

References:

74

• Z. Iqbal et al., “Empirical Investigation of Search Algorithms for Environment Model-

Based Testing of Real-Time Embedded Software”, ACM ISSTA, 2012

• Z. Iqbal et al., “Environment Modeling and Simulation for Automated Testing of Soft

Real-Time Embedded Software”, Software and System Modeling (Springer), 2014

Objectives

• Model-based system testing

– Independent test team

– Black-box

– Environment models

75

Environment

Simulator

Test cases

Environment Models

Test oracle

Environment: Domain Model

76

Environment: Behavioral Model

77

Test Case Generation

• Test objectives: Reach “error” states (critical environment

states)

• Test Case: (1) Environment and (2) Simulation Configuration

– (1) Number of instances for each component in domain model,

e.g., number of items on conveying belt

– (2) Setting non-deterministic properties of the environment,

e.g., speed of sorter’s left and right arms

• Oracle: Reaching an “error” state

• Metaheuristics: search for test cases getting to error state

• Fitness function

– Distance from error state

– Distance from satisfying guard conditions

– Time distance

– Time in “risky” states

78

Stress Testing focused on

Concurrency Faults

Reference:

79

M. Shousha et al., ”A UML/MARTE Model Analysis Method for

Uncovering Scenarios Leading to Starvation and Deadlocks in

Concurrent Systems”, IEEE Transactions on Software Engineering

38(2), 2012

Stress Testing of Distributed Systems

Reference:

80

V. Garousi et al., "Traffic-aware Stress Testing of Distributed Real-Time

Systems Based on UML Models using Genetic Algorithms", Journal of

Systems and Software (Elsevier), 81(2), 2008

81

Objective
Function

Search
Space

Search
Technique

 Search to optimize
objective function

 Metaheuristics,
constraint programming

 Scalability: A small part
of the search space is
traversed

 Model: Guidance to
worst case, high risk
scenarios across space

 Reasonable modeling
effort based on
standards or extension

 Heuristics: Extensive
empirical studies are
required

General Pattern: Using Metaheuristics

Scalability

82

Project examples

• Scalability is the most common verification challenge in

practice

• Testing closed-loop controllers

– Large input and configuration space

– Smart heuristics to avoid simulations (machine

learning)

• Schedulability analysis and stress testing

– Large space of possible arrival times

– Constraint programming cannot scale by itself

– CP was carefully combined with genetic algorithms

83

Scalability: Lessons Learned

• Scalability must be part of the problem definition and

solution from the start, not a refinement or an after-

thought

• Meta-heuristic search, by necessity, has been an essential

part of the solutions, along with, in some cases, machine

learning, statistics, etc.

• Scalability often leads to solutions that offer “best

answers” within time constraints, but no guarantees

• Scalability analysis should be a component of every

research project – otherwise it is unlikely to be adopted in

practice

• How many papers research papers do include even a

minimal form of scalability analysis?

84

Applicability

85

Project examples

• Applicability requires to account for the domain and context

• Testing controllers

– Relies on Simulink only

– No additional modeling or complex translation

– Within domains, differences have huge implications in terms
of applicability (open versus closed loop controllers)

• Minimizing risks of CPU shortage

– Trade-off between between effective synchronisation and
CPU usage

– Trade-off achieved through multiple objective GA search and
appropriate decision tool

• Schedulability analysis and stress testing

– Near deadline misses must be identified

86

Applicability: Lessons Learned

• In software engineering, and verification in particular,

just understanding the real problems in real contexts

is difficult

• What are the inputs required by the proposed

technique?

• How does it fit in development practices?

• Is the output what engineers require to make

decisions?

• There is no unique solution to a problem as they tend

to be context dependent, but a context is rarely

unique and often representative of a domain

87

Discussion

• Metaheuristic search

– Tends to be versatile, easy to tailor to a new problem

– Entails acceptable modeling requirements

– Can provide “best” answers at any time

– Scalable

But

– Not a proof, no certainty

– Though in practice (complex) models are not fully correct,

there is no certainty anyway

– Effectiveness of search guidance is key and must be

experimented and evaluated

– Models are key to provide adequate guidance

88

Talk Summary

• Focus: Meta-heuristic Search to enable scalable
verification and testing.

• Scalability is the main challenge in practice.

• Drew lessons learned from example projects in
collaboration with industry, on real systems and in real
verification contexts.

• Results show that meta-heuristic search contributes to
mitigate the scalability problem.

• It has shown to lead to applicable solutions in practice.

• Solutions are very context dependent.

• It is usually combined with a variety of other
complementary techniques: system modeling,
constraint solving, machine learning, statistics.

90

Scalable Software Testing and Verification

Through Heuristic Search and Optimization

Lionel Briand

Interdisciplinary Centre for ICT Security, Reliability, and Trust (SnT)

University of Luxembourg, Luxembourg

QRS, Vancouver, August 3, 2015

SVV lab: svv.lu

SnT: www.securityandtrust.lu

