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Scalable Software Testing and
Verification Through Heuristic
Search and Optimization




Verification, Testing

« The term “verification” is used in its wider sense: Defect
detection.

« Testing Is, in practice, the most common verification
technique.

 Testing Is about systematically, and preferably
automatically, exercise a system such as to maximize
chances of uncovering (important) latent faults within time
constraints.

 Other forms of verifications are important too (e.g., design
time, run-time), but much less present in practice.

- Decades of research have not yet significantly and widely
Impacted software verification practice.



Scalable? Applicable?
ST

« Scalable: Can a technology be applied on large
artifacts (e.g., models, data sets, input spaces) and
still provide useful support within reasonable effort,
CPU and memory resources?

« Applicable: Can a technology be efficiently and
effectively applied by engineers in realistic
conditions?

— realistic # universal




Metaheuristics

SIT
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 “A metaheuristic is a heuristic method for solving a
very general class of computational problems by
combining user given black-box procedures —
usually heuristics themselves — in a hopefully
efficient way.” (Wikipedia)

 Hill climbing, Tabu search, Simulated Annealing,
Genetic algorithms, Ant colony optimisation ....

« Qur research is agnostic to any specific technology
but is driven by problems — the use of metaheuristics
IS however a recurring pattern. Why?
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Talk Outline
ST
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« Selected project examples, with industry
collaborations

« Similarities and patterns

 Lessons learned
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Testing Software Controllers

References:

 R. Matinnejad et al., “Effective Test Suites for Mixed Discrete-Continuous Stateflow
Controllers” ACM ESEC/FSE 2015

* R. Matinnejad et al., “MiL Testing of Highly Configurable Continuous Controllers:
Scalable Search Using Surrogate Models”, IEEE/ACM ASE 2014

 R. Matinnejad et al., “Search-Based Automated Testing of Continuous Controllers:
Framework, Tool Support, and Case Studies”, Information and Software Technology,
Elsevier (2014)




Electronic Control Units (ECUS) SIT
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Comfort and variety

More functions Safety and reliability

Faster time-to-market Greenhouse gas emission laws

Less fuel consumption .



Dynamic Continuous Controllers m




A Taxonomy of Automotive Functions

SN
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comun comonns
i

unit convertors  calculating positions, Staté maChWCIosec‘l—loop

duty cycles, etc controllers controllers (PID)

Different testing strategies are required for
different types of functions
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Development Process
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MATLAB/Simulink model

>
>

H> 0\

1

Constant

u

Switch

1
- <
Z

Unit Delay1

ST

o>
Scope
1
— €
Z
Unit Delay

Fibonacci sequence: 1,1,2,3,5,8,13,21,...

14




Controller Input and Output at MIL ST
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Controllers at MIL SﬂT

|,II &1l

Inputs: Time-dependent variables

Acmslred( t)

output(t)

—»| Plant Model I
actual (t)

P er(t) - |

==

+

I Kjfe(t)dt <

R

Configuration Parameters

16




Requirements and Test Objectives ST
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Test Strategy: A Search-Based Approach SNT

Worst Case(s)?

Final Desired (FD)

Initial Desired (ID)

Continuous behavior

Controller’'s behavior can
be complex

Meta-heuristic search In
(large) input space:
Finding worst case inputs
Possible because of

automated oracle
(feedback loop)

Different worst cases for
different requirements

Worst cases may or may
not violate requirements

18



Smoothness Objective Functions: Ogoothness ST
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Test Case A Test Case B

C)Smoothness(TeSt Case A) > C)Smoothness(TeSt Case B)

We want to find test scenarios which maximize Og,qothness
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Search Elements
ST

Search Space:
« Initial and desired values, configuration parameters

Search Technique:
* (1+1) EA, variants of hill climbing, GAs ...

Search Objective:
» Objective/fitness function for each requirement

Evaluation of Solutions
« Simulation of Simulink model => fithess computation

 Result:

» Worst case scenarios or values to the input variables that (are
more likely to) break the requirement at MiL level

« Stress test cases based on actual hardware (HiL)

—

20



Solution Overview (Simplified Version) ST
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Automotive Example ST

« Supercharger bypass flap controller
v'Flap position is bounded within [0..1]
v Implemented in MATLAB/Simulink

v'34 sub-components decomposed into 6
abstraction levels

v'The simulation time T=2 seconds

= )
Bypass Flap ‘ Bypass Flap

Supercharger Supercharger

Flap position =0 Flap position = 1 (closed)
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Analysis — Fitness increase over iterations ST
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Conclusions SNT
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 We found much worse scenarios during MiL testing than our
partner had found so far, and much worse than random
search (baseline)

 These scenarios are also run at the HiL level, where testing is
much more expensive: MiL results -> test selection for HiL

« But further research was needed:
— Simulations are expensive
— Configuration parameters

— Dynamically adjust search algorithms in different
subregions (exploratory <-> exploitative)
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Testing in the Configuration Space SIT

« MIL testing for all feasible configurations
« The search space is much larger

* The search is much slower (Simulations of Simulink
models are expensive)

« Results are harder to visualize

« Not all configuration parameters matter for all
objective functions

27



Modified Process and Technology ST
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Objective S e (_72
Functions 1.Exploration with rE List of 2.Search with i
+ - Xploration \ - - B N\ e Critical = Surrogate o Worst-Case
Controller Dimensionality Regression e . Scenarios
o Reduction g Domain Partitions Modeling

Model Tree
(Simulink) Expert
Visualization of the
8-dimension space
Dimensionality using regression trees ¥
reduction to identify Surrogate modeling
the significant variables to predict the objective

function and
speed up the search
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A Taxonomy of Automotive Functions
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unit convertors  calculating positi State machine sed-loop
duty cycles, etc controllers ntrollers (PID)

Different testing strategies are required for
different types of functions
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Differences with Close-Loop Controllers SIT

Mixed discrete-continuous
behavior: Simulink stateflows

Much quicker simulation time

No feedback loop -> no
automated oracle

The main testing cost is the
manual analysis of output
signals

Goal: Minimize test suites
Challenge: Test selection

Entirely different approach to
testing

securityandirstiu

Engaging [~(vehspd = 0) A
I time > 2|

OnMoving

time 4 +;
trlSig := f(time)

OnSlipping

time + +;
trlSig := g(time

[time > 4]

[(vehspd = 0) A
time > 3]

OnCompleted
time + +;
ctrlSig:=1.0
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Selection Strategies SIT

Adaptive Random Selection

White-box Structural Coverage

« State Coverage

« Transition Coverage

Output Diversity

Failure-Based Selection Criteria (search)
« Domain specific failure patterns

* Output Stability

e Output Continuity

40
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Continuity SIT
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Minimizing CPU Shortage Risks
During Integration

References:

* S. Nejati et al., “Minimizing CPU Time Shortage Risks in Integrated Embedded
Software”, in 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2013), 2013

* S. Nejati, L. Briand, “Identifying Optimal Trade-Offs between CPU Time Usage and
Temporal Constraints Using Search”, ACM International Symposium on Software
Testing and Analysis (ISSTA 2014), 2014
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Automotive: Distributed Development ST
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Software Integration
J ST
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Stakeholders

0.2 .

x

\/

Car Makers

« Develop software optimized for
their specific hardware

* Provide part suppliers with
runnables (exe)

L

e

‘5

ST
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L

@

r

Part Suppliers

Integrate car makers software
with their own platform

Deploy final software on ECUs
and send them to car makers
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Different Objectives ST
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Car Makers Part Suppliers
 Obijective: Effective execution and * Objective: Effective usage of
synchronization of runnables CPU time
« Some runnables should execute * Max CPU time used by all the
simultaneously or in a certain order runnables should remain as low

as possible over time

a7



An overview of an integration process in the

automotive domain m

OEM

Original Equipment Manufacturer

sw runnables
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‘ sw runnables

DelLPHI

Automotive Systems
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CPU time shortage
J SIT
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« Static cyclic scheduling: predictable, analyzable
« Challenge

— Many OS tasks and their many runnables run within a limited

available CPU time
« The execution time of the runnables may exceed their time slot

* Our goal

— Reducing the maximum CPU time used per time slot to be

able to
* Minimize the hardware cost
* Reduce the probability of overloading the CPU in practice
« Enable addition of new functions incrementally

(2) e - - — = — —

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms

D) s v == o= oo = == =

v

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 49

—



Using runnable offsets (delay times) ST
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]nsertmg runnables’ oﬁfvets

10ms 15ms 20ms 25ms 30ms 35ms 40ms /\}

>

vV’

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms

Offsets have to be chosen such that
the maximum CPU usage per time slot is minimized, and further,
the runnables respect their period
the runnables respect their time slot
the runnables satisfy their synchronization constraints
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Search algorithms

SIT
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- The objective function is the max CPU usage of a 2s-simulation of
runnables

- The search modifies one offset at a time, and updates other offsets
only if timing constraints are violated
- Single-state search algorithms for discrete spaces (HC, Tabu)

Case Study: an automotive software system with 430 runnables,
search space = 1027
53ams [ 7 213ms

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Running the system without offsets Optimized offset assignment 55



Trade-off between Objectives SNt
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Car Makers roNE TiEE ToEE T3 Part Suppliers
Execute r¢ to 73 close to one another. Minimize CPU time usage
1 slot 4ms

oms 5ms 10ms 15ms 20ms 2bms  30ms

2 slots 3mMs
Oms 5ms 10ms 15ms 20ms 25ms  30ms

3slots g 5ms  10ms  15ms  20ms  25ms  30ms 2MS
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Trade-off curve ST
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Multi-objective search ST

« Multi-objective genetic algorithms (NSGA 1)

« Supporting decision making and negotiation between
stakeholders

3.0+

Obijectives:
(1) Max CPU time

* (2) Maximum time
slots between

25 b + NSGA-II25,000)
jan)
“dependent” tasks =
E .
=

« Random ©5,000)

10 12 1|5 20 25 3‘0 35 40 45
TotalNum berofTim e Slots




Conclusions

- Search algorithms to compute
offset values that reduce the
max CPU time needed

- Generate reasonably good
results for a large automotive
system and in a small amount
of time

- Used multi-objective search -
tool for establishing trade-off
between relaxing
synchronization constraints and
maximum CPU time usage
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Schedulability Analysis and Stress
Testing

References:

« S. DiAlesio et al., “Stress Testing of Task Deadlines: A Constraint Programming
Approach’, IEEE ISSRE 2013, San Jose, USA

« S. DiAlesio et al., “‘Worst-Case Scheduling of Software Tasks — A Constraint
Optimization Model to Support Performance Testing, Constraint Programming (CP),
2014

« S. DiAlesio er al. “Combining Genetic Algorithms and Constraint Programming to
Support Stress Testing”, ACM TOSEM (forthcoming)
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Problem
ST

« Schedulablility analysis encompasses techniques
that try to predict whether all (critical) tasks are
schedulable, i.e., meet their deadlines

« Stress testing runs carefully selected test cases
that have a high probability of leading to deadline
misses

« Stress testing Is complementary to schedulability
analysis

« Testing is typically expensive, e.g., hardware in
the loop

* Finding stress test cases is difficult

65



Finding Stress Test Cases is Difficult

SIT
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j0,j1,j2 arrive at at0, atl , at2 and must
finish before dlO, dI1, dI2

JO J1 )2 JO J1 J2
ol atO | | | ol at0 | | |
1 > | at2 | 1 > | |
2 ' | > 2 atl | |
3 I | 3 ] >l at2 |
A 7 a1 ! 2 A | ! T

. | = | |
> | | > | I .
6| do | T | 6| dio | di di2 ]
7 | | 7 | |
8 | dl ] & | 8 | | & |
9 | I | 9 | | |

J1 can miss its deadline dl1 depending on
when at2 occurs!
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Challenges and Solutions ST

* Ranges for arrival times form a very large input space

« Task interdependencies and properties constrain
what parts of the space are feasible

« We re-expressed the problem as a constraint
optimisation problem

« Constraint programming (e.g., IBM CPLEX)

67




Context ST
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Constraint Optimization
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-

Constraint Optimization Problem

~
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Dynamic Properties of Tasks
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Process and Technologies
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System Design

INPUT

System Platform

Design Model (Time and
Concurrency Information)

UML Modeling (e.g., MARTE) W

Deadline Misses Analysis

Optimization Problem

(Find arrival times that maximize the chance of

deadline misses)

Stress Test Cases

Constraint

Programming (CP)

N/

Solutions

OUTPUT

(Task arrival times likely to lead to

deadline misses)

]

Constraint Optimization
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Challenges and Solutions

« Scalability problem: Constraint programming (e.g.,
IBM CPLEX) cannot handle such large input spaces
(CPU, memory)

« Solution: Combine metaheuristic search and
constraint programming

— metaheuristic search identifies high risk regions in
the input space

— constraint programming finds provably worst-case
schedules within these (limited) regions

— Achieve (nearly) GA efficiency and CP
effectiveness

71



Combining CP and GA ST

-
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Environment-Based Testing
of Soft Real-Time Systems

References:

« Z.lIgbal et al., “Empirical Investigation of Search Algorithms for Environment Model-
Based Testing of Real-Time Embedded Software”, ACM ISSTA, 2012

» Z.lgbal et al., “Environment Modeling and Simulation for Automated Testing of Soft
Real-Time Embedded Software”, Software and System Modeling (Springer), 2014
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Objectives
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* Model-based system testing
— Independent test team
— Black-box
— Environment models

Environment Models

&
et (moving Time) Moving
N
gisteps> |
fprob = 0.06)
“““““““““
e ok
- _J

<im Sertingrm
Hot Moving
s AN after (80, 5
fprob=002)
g
|

Test oracle

Environment Test cases
Simulator
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Environment; Domain Model ST
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Environment: Behavioral Model ST
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Test Case Generation ST
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» Test objectives: Reach “error” states (critical environment
states)

« Test Case: (1) Environment and (2) Simulation Configuration

— (1) Number of instances for each component in domain model,
e.g., number of items on conveying belt

— (2) Setting non-deterministic properties of the environment,
e.g., speed of sorter’s left and right arms

» Oracle: Reaching an “error” state
« Metaheuristics: search for test cases getting to error state
* Fitness function

— Distance from error state

— Distance from satisfying guard conditions

— Time distance

— Time in “risky” states
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Stress Testing focused on
Concurrency Faults

Reference:

M. Shousha et al., "A UML/MARTE Model Analysis Method for
Uncovering Scenarios Leading to Starvation and Deadlocks in
Concurrent Systems”, IEEE Transactions on Software Engineering

38(2), 2012
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Stress Testing of Distributed Systems

Reference:

V. Garousi et al., "Traffic-aware Stress Testing of Distributed Real-Time
Systems Based on UML Models using Genetic Algorithms", Journal of
Systems and Software (Elsevier), 81(2), 2008
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General Pattern: Using Metaheuristics

Model
System of goods selling via catalogues O bJ e Ctlve
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- Search
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Problem

ST
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Search to optimize
objective function

Metaheuristics, _
constraint programming

Scalability: A small part
of the search space is
traversed

Model: Guidance to
worst case, high risk
scenarios across space

Reasonable modeling
effort based on
standards or extension

Heuristics: Extensive
empirical studies are
required
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Scalability
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Project examples ST

« Scalability is the most common verification challenge in
practice

« Testing closed-loop controllers
— Large input and configuration space

— Smart heuristics to avoid simulations (machine
learning)

« Schedulability analysis and stress testing
— Large space of possible arrival times
— Constraint programming cannot scale by itself
— CP was carefully combined with genetic algorithms
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Scalabllity: Lessons Learned

« Scalablility must be part of the problem definition and
solution from the start, not a refinement or an after-
thought

« Meta-heuristic search, by necessity, has been an essential
part of the solutions, along with, in some cases, machine
learning, statistics, etc.

« Scalability often leads to solutions that offer “best
answers” within time constraints, but no guarantees

« Scalability analysis should be a component of every
research project — otherwise it is unlikely to be adopted in
practice

 How many papers research papers do include even a

minimal form of scalability analysis?
84
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Applicability
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Project examples ST

« Applicability requires to account for the domain and context

« Testing controllers
— Relies on Simulink only
— No additional modeling or complex translation

— Within domains, differences have huge implications in terms
of applicability (open versus closed loop controllers)

« Minimizing risks of CPU shortage

— Trade-off between between effective synchronisation and
CPU usage

— Trade-off achieved through multiple objective GA search and
appropriate decision tool

« Schedulability analysis and stress testing
— Near deadline misses must be identified
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Applicability: Lessons Learned

 In software engineering, and verification in particular,
just understanding the real problems in real contexts
IS difficult

« What are the inputs required by the proposed
technique?

« How does it fit in development practices?

 |s the output what engineers require to make
decisions?

« There is no unique solution to a problem as they tend
to be context dependent, but a context is rarely
unique and often representative of a domain
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Discussion

« Metaheuristic search
— Tends to be versatile, easy to tailor to a new problem
— Entalls acceptable modeling requirements
— Can provide “best” answers at any time
— Scalable

But
— Not a proof, no certainty

— Though in practice (complex) models are not fully correct,
there is no certainty anyway

— Effectiveness of search guidance is key and must be
experimented and evaluated

— Models are key to provide adequate guidance

88




Talk Summary ST

 Focus: Meta-heuristic Search to enable scalable
verification and testing.

« Scalabllity is the main challenge in practice.

* Drew lessons learned from example projects in
collaboration with industry, on real systems and in real
verification contexts.

 Results show that meta-heuristic search contributes to
mitigate the scalability problem.

It has shown to lead to applicable solutions in practice.
« Solutions are very context dependent.

 Itis usually combined with a variety of other
complementary technigues: system modeling,
constraint solving, machine learning, statistics.
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