
1 +'

&

$

%

HRML: a hybrid relational modelling

language

He Jifeng

+ +

2 +'

&

$

%

Hybrid Systems

• Systems are composed by continuous physical component and

discrete control component

• The system state evoles over time according to interacting law of

discrete and continuous dynamics.

– For discrete dynamics, it changes state instantaneously and

discontinuously.

– During continuous transitions, its state is a continuous

function of continuous time and varies according to a

differential equation.

• Modelers mix discrete time reactive systems with continuous

time ones.

+ +

3 +'

&

$

%

Key issues

(1) to invent formal modeling techniques for hybrid

systems using which one can easily model discrete and

continuous behaviours. These techniques should also

compositional and hierarchical and enable the user to

uniformly model a complex system at different levels.

(2) to develop formal analysis, verification and synthesis

techniques to support the architecture model of hybrid

systems, and guarantee the correctness of refinement and

combination of subsystem models, thus solving the

constructivity problem of complex systems.

+ +

4 +'

&

$

%

History

• Simulink: Explicit model made of ODEs

• Modelica: Implicit model made of DAEs

• Hybrid automata (Alur, Henzinger ,Tavermini)

• Phase transition system (Maler),

• Declarative control (Kohn),

• Extended state-transition system (Zhou)

• Hybrid action systems (Rönkkö)

• Differential Dynamic Logic (Platzer)

+ +

5 +'

&

$

%

Modelling Languages

• Hybrid CSP (He, Zhou)

• Extended Guarded Command Language with

Differential Equations (Rönkkö)

• Hybrid π-calculuds (Rounds and Song)

• SHIFT: Network of hybrid automata

• R-Charon: Reconfigurable systems

+ +

6 +'

&

$

%

Our approach

We propose a hybrid relational modelling language, where

(1) the discrete transitions are modelled by assignment

and output as zero time actions, while the continuous

transitions of physical world are described by differential

equations and synchronous constructs.

(2) The signal mechanism is used for describing

interaction between system controller with physical

device.

(3) Three types of guards are introduced to model the

condition under which the system controller switches to a

new mode.

+ +

7 +'

&

$

%

Contents

1. Hybrid Relation calculs.

2. HRML: a hybrid modelling language

3. Laws of Hybrid Programs

4. Case study

+ +

8 +'

&

$

%

Relation

A relation is a pair (αP, P), where P is a predicate

containing no free variables other than in αP , and αP is

a set of variable names:

αP = inα ∪ outα

where inα is a set of undashed variables standing for

initial value

and outα is a set of dashed variables standing for final

value.

+ +

9 +'

&

$

%

Hybrid relation

A hybrid relation is a binary relation P where its

alphabet αP is enlarged with a set conα of continuous

variables, which are introduced to record the dynamic

behaviour of physical coponents

αP = inα ∪ conα ∪ outα

+ +

10 +'

&

$

%

Discrete variables

The discrete variables observable at the start of a hybrid

program are the same as those observable at the end, in

this case the output alphabet is obtained just by putting

a dash on all the variables of the input alphabet:

outα = {x′ | x ∈ inα}

+ +

11 +'

&

$

%

Continuous variables

The continuous variables of are used to record dynamic

behavior of the physical devices controlled by the

program, and they are modelled as mappings from time

to physical state of the devices.

conα is divided into two sets ownα and envα which

represent the set of continuous variables owned by P and

the set of continuous variables accessble by P

respectively.

+ +

12 +'

&

$

%

Differential equation

Differential equation DF =df (F (v, v̇) = 0) can be seen

as a hybrid relation

inα =df {t}

outα =df {t
′}

ownα =df {v}

DF =df (t ≤ t′) ∧

∀τ ∈ [t, t′) • (F (v, v̇)(τ) = 0)

+ +

13 +'

&

$

%

Hybrid Relatin Calculus

• Sequential operators:

– Choice

– Conditional

– Composition

• Parallel operators:

– Disjoint parallel

– Parallel by merge

• Recursion

+ +

14 +'

&

$

%

Disjoint parallel

Let P and Q be hybrid relations with disjoint output

alphabet and conα. Deine their parallel composition

P‖Q by

P ‖ Q =df (P ∧Q)

where

inα =df inαP ∪ inαQ

outα =df outαP ∪ outαQ

conα =df conαP ∪ conαQ

+ +

15 +'

&

$

%

Parallel with shared output

A merge mechanism M is a pair (x : Val, op), where x is

a variable of type Val, and op is a binary operator over

V al.

Examples

(1) M1 = (x : Real, max) is a merge mechanism.

(2) M3 = (x : L, glb), where L is a lattice, is a merge

mechanism.

+ +

16 +'

&

$

%

Parallel by merge

Let P and Q be hybrid relations with

x′ ∈ outαP ∩ outαQ. We define their parallel

composition equipped with the merge mechanism M ,

denoted by P ‖M Q, as follows:

P ‖M Q =df ∃m, n : Val •

(P [m/x′] ∧ Q[n/x′] ∧ (x′ = (mop n)))

inα =df inαP ∪ inαQ

outα =df outαP ∪ outαQ

conα =df conαP ∪ conαQ

+ +

17 +'

&

$

%

Healthiness Conditions

The healthiness conditions of hybrid programs are closely

related to the following features:

• Time

• Interaction mechanism

• Intermediate Observation

• Divergence

+ +

18 +'

&

$

%

Introducing Time

Time variables t and t′ are introduced in an alphabet of

hybrid relation to record the start and complete time

instants of a transition. a hybrid relation P has to meet

the following condition

P (t, t′) = P (t, t′) ∧ (t ≤ t′)

We introduce a function H1 to convert a hybrid relation

into a healthy hybrid relation:

H1(P) =df P ∧ (t ≤ t′)

+ +

19 +'

&

$

%

Interaction mechanism

A signal, denoted by its name, has two types of status,

i.e., either presence or absence.

A signal is present if

(1) it is an input signal received from the environment, or

(2) it is emitted as the result of performing an output

command.

For any signal s, we use a clock variable s.clock to

record the time instants at which the signal s is present.

+ +

20 +'

&

$

%

Healthiness condition of clock variable

s.clock has to be a subset of s.clock′ since the latter may be added

some time instants of [t, t′] at which the signal s is present. Thus, a

hybrid relation is required to meet the following condition:

P = P ∧ inv(s)

where

inv(s) =df (s.clock ⊆ s.clock′) ∧ (s.clock′ ⊆ (s.clock ∪ [t, t′]))

We introduce a function H2 to convert a hybrid relation into a

healthy hybrid relation:

H2(P) =df P ∧ inv(s)

+ +

21 +'

&

$

%

Introducing program status variables

We add st and st′ to the output alphabet of a hybridrelation to

describe the program status.

• st = term indicates its sequential predecessor terminates

successfully. As a result, the control passes to the hybrid

program.

• st = stable indicates the predecessor has not finished yet (for

example, it is waiting for occurrences of some events). As a

result, the hybrid program can not start its execution.

• st = div indicates the predecessor enters a chaotic status, and

can not be rescued by its environment.

+ +

22 +'

&

$

%

Healthiness condition of st

A hybrid program has to keep idle until its sequential

predecessor terminates successfully.

P = (H1 ◦H2)(P) � st = term � skip

where

skip =df IIA � (st 6= div) � (H1 ◦H2)(⊥)

We define a mapping to convert a hybrid relation into a

HC3-healthy one:

H3(P) =df (H1 ◦H2)(P) � st = term � skip

+ +

23 +'

&

$

%

Healthiness condition of st′

Once a hybrid program enters a divergent state, its

future behaviour becomes uncontrollable. This requires it

to meet the following condition:

P = P ; skip

Define

H4(P) =df P ; skip

+ +

24 +'

&

$

%

Composition of healthy convertions Hi

Define

H =df (H1 ◦H2 ◦H3 ◦H4)

Theorem

P satisfies HC1−HC4 if and only if P = H(P)

Theorem

(1) H is monotonic and idempotent.

(2) Healthy hybrid relations form a complete lattice L.

+ +

25 +'

&

$

%

Closure of healthy hybrid relations

Theorem

(1) H(P) ⊓H(Q) = H(P ⊓Q)

(2) H(P) � b � H(Q) = H(P � b � Q)

(3) H(P);H(Q) = H(P ;H(Q))

(4) If P and Q lie in the complete lattice L, then so does

(P‖MQ)

where the merge mechanism

M =df (st : {term, stable, div}, glb).

+ +

26 +'

&

$

%

HRML: a hybrid relational modelling language

AP ::= skip | chaos | stop | x := e | !s |delay(δ)

EQ ::= R(v, v̇) |EQ init v0 |EQ‖EQ

P ::= AP |P ⊓ P |P ; P |P � b(x) � P |P‖P |

EQuntil g |when(G) |µX • P (X)

timer c • P | signal s • P

g ::= skip | s | test | g · g | g + g

test ::= true | v ≥ e | v ≤ e | test ∧ test | test ∨ test

G ::= g& P |G[]G

+ +

27 +'

&

$

%

Alphabet of HRML programs

The alphabet of an HRML program P of HRML

consists of the following components

αP =df inαP ∪ outαP ∪ conαP

where conαP = ownαP ∪ envαP , and ownα

comprises two types of continuous variables:

conα =df phyα ∪ timerα

to specify the physical devices and timers owned by P

respectively.

+ +

28 +'

&

$

%

Elements of the input alphabet

inαP denotes the set of input variables of P

inαP =df {st, t, count} ∪ PV ar ∪ ClockV ar

• count (of the type non-negative reals) describes the emitting

order of the signals that occur in the same time instant.

• PV ar denotes the set of program variables.

• ClockV ar is the set of clock variables:

ClockV ar =df {s.clock | s ∈ InSignal ∪OutSignal}

where s.clock records the time instant t and the emit order count

at which signal s occurs.

+ +

29 +'

&

$

%

Atomic commands

1. Assignment:

it is used to model the discrete change. The execution of x := e

assigns the value of e to variable x instantaneously

(x := e) =df H(IIinα[e/x])

2. Output:

!s emits signal s, and then terminates immediately.

!s =df H(IIinα[(s.clock ∪ {(t, count)})/s.clock])

+ +

30 +'

&

$

%

Laws of output

Theorem

(1) !s1; !s2 = !s2; !s1

(2) !s; !s = !s

(3) !s; (x := e) = (x := e); !s

+ +

31 +'

&

$

%

Guard

Let g be a guard g, the boolean function

g.fired : Intervel→ T ime→ Bool

is used to specify its status over the time interval [t, t′].

For any τ ∈ [t, t′]

g.fired([t, t′])(τ) = true

indicates the guard g is ignited at the time instant τ .

+ +

32 +'

&

$

%

Laws of guard

Define (g = h) =df (g.fired = h.fired)

Theorem

(1) (Guard, +, ·, false, true) forms a Boolean algebra.

(2) · has false as its zero.

(3) + has true as zero.

Corollary g + (g · h) = g

+ +

33 +'

&

$

%

Order

We say g is weaker than h (denoted by g ≤ h), if the

ignition of h can fire g immediately:

g ≤ h =df h = (h · g)

Theorem ≤ is a partial order.

Theorem g ≤ h iff g = (g + h)

+ +

34 +'

&

$

%

Ignition of guards

We introduce the following boolean function

g.triggered : Interval → Bool

to identify the cases when the guard g is only fired at the endpoint of

the interval

g.triggered([t, t′]) =df

g.fired([t, t′])(t′)∧

∀τ ∈ [t, t′) • ¬g.fired([t, t′])(τ)

To specify those cases when the guard g remains idle we introduce

the boolean function g.inactive

g.inactive([t, t′]) =df ∀τ ∈ [t, t′] • ¬g.fired([t, t′])(τ)

+ +

35 +'

&

$

%

Properties of triggeredandinactive

Theorem

(1) (g1 + g2).triggered =

g1.triggered ∧ (g2.triggered ∨ g2.inactive) ∨

g2.triggered ∧ (g1.triggered ∨ g1.inactive)

(2) (g1 + g2).inactive = g1.inactive ∧ g2.inactive

+ +

36 +'

&

$

%

when statement

The program when(g1&P1[]....[]gn&Pn) waits for one of its guards to

be fired, then selects a program Pi with the ignited guard to be

executed.

when(g1&P1[]....[]gn&Pn) =df

H(st′ = stable∧IIC∪{count}∧time−passing ∧
∧

1≤k≤n(gk.inactive))

∨

∨

1≤i≤n H

st′ = term ∧ IIC∪PV ar ∧ time−passing∧

update(count, gi)∧

gi.triggered ∧
∧

k 6=i(gk.triggered ∨ gk.inactive)

; Pi

+ +

37 +'

&

$

%

when statememt

where

C =df {s.clock | s ∈ OutSignal}

update(count, g) =df (count′ = count)

�g ∩ InSignal = ∅�

(count′ > max(count, index(g))

index(g) =df max({0} ∪ {π2(last(s.clock
′)) | s ∈ g})

+ +

38 +'

&

$

%

Laws of when statement

If a when construct comprises a skip guard, then other

guarded branches can be selected only when their

corresponding guards are fired immediately after the

when statement starts its execution.

L1 when((skip&P) [] (g&)Q []G)

= when((skip&P) [] ((skip · g)&Q) []G)

Corollary

when((skip&P) [] (g&P) []G) = when((skip&P) []G)

+ +

39 +'

&

$

%

Laws of when statement

Once a guard is fired, so does the same guard in its guarded

when-construct.

L2 when(((g · h1)&when((g · h2)&P [] G1)) [] G2)

= when(((g · h1)&when(((skip + g) · h2) [] G1)) [] G2)

Corollary If g ≤ h, then

when(h&when(g&P [] G1) [] G2) = when(h&when(skip&P [] G1) [] G2)

+ +

40 +'

&

$

%

Laws of concurrency

An input signal can ignite the corresponding guard in the

when and until statements.

L1 (!s;P)‖(R until(s + g) ; Q) = (!s;P)‖Q

L2 (!s;P)‖when((s&Q) []G)

= (!s;P)‖when((skip&Q) []G)

Corollary

(!s;P)‖when(s&Q) = (!s;P)‖Q

+ +

41 +'

&

$

%

Laws of concurrency

when statements are closed under concurrent composition.

L3 Let P = when((g1&P1) []...[] (gn&Pn))

and Q = when((h1&Q1) []...[] (hm&Qm)). Then

P‖Q = when

(g1&(P1‖Q)) []...[] (gn&(Pn‖Q)) []

(h1&(P‖Q1)) []...[] (hm&(P‖Qm))[]

[]i, j((gi · hj)&(Pi‖Qj))

Corollary

when(g& P)‖when(g& Q) = when(g& (P‖Q))

+ +

42 +'

&

$

%

Introducing signal

The first theorem demonstrates how to introduce signals

as an interaction mechanism to link a physical device

with a controller

Theorem

Let l < m < n. If R ⊒ (v̇ > 0) then

(R initmuntil (v ≥ n)) =

sig s, u •

(R initmuntil s)

‖ when((v ≥ n)&!s [] (v ≤ l)&!u)

+ +

43 +'

&

$

%

Introduce signal

Theorem

Let l < m < n. If R⇒ (v̇ < 0) then

(R initmuntil (v ≤ l))

= signal s, u •

(R initmuntilu)

‖ when(((v ≥ n)&!s) [] ((v ≤ l)&!u))

+ +

44 +'

&

$

%

Adjust the sampling rate

The following theorem is used to reduce the sampling rate of the

controller by estimating the change speed of physical state

Theorem Let l < m < n.

If R ⊒ (0 < v̇ ≤ r) and δ < (n−m)/r, then

(R initmuntil (v ≥ n))

= signal s, u •

(R initmuntil s)

‖

delay(δ);

when(((v ≥ n)&!s) [] ((v ≤ l)&!u))

+ +

45 +'

&

$

%

Water Tank

The system is used to control the water level in a tank by

switching on a control valve, The water level will rise

whenever the valve is open, otherwise it will drop down.

Assume that the rising and dropping phases are governed

by the following differential equations:

Rise =df (ḣ = f(h))

Drop =df (ḣ = −g(h))

where f(h) > 0 and g(h) > 0.

+ +

46 +'

&

$

%

Requirement

The goal is to maintain the water level between L and M

units. Assume that initially the water level is M and the

control valve is open. Such a requirement can be

formalised as an until statement.

Req =df (h←M); (Goal until false)

where Goal =df (L ≤ h ≤ H) ∧ (ḣ 6= 0)

+ +

47 +'

&

$

%

Design 1

To deliver a refinement of Req by investigating the rising up and

falling down phases of the water level separately Let

L < M− < M < M+ < H. Define

Up1 =df (L < h < H) ∧ (0 < ḣ < r)until (h ≥M+)

Down1 =df (L < h < H) ∧ (l < ḣ < 0)until (h ≤M−)

where we assume that the variations of water level are bounded

r =df sup{f(h) | L ≤ h ≤M}

l =df inf{−g(h) | L ≤ h ≤M}

Define Design1 =df (h←M); (Up1; Down1)
∗

Theorem Req ⊑ Design1

+ +

48 +'

&

$

%

Design 2

To refine Up1 and Down1 by introducing the differential equations

Rise and Drop:

Up2 =df Riseuntil (h ≥M+)

Down2 =df Dropuntil (h ≤M−)

Let Design2 =df (h←M); (Up2; Down2)
∗

Theorem Design1 ⊑ Design2

+ +

49 +'

&

$

%

Design 3

To construct a control program to monitor the variations in water

level, and emit signals to alternate the transition modes of the tank.

Let

Up3 =df Riseuntil off

Down3 =df Dropuntil on

and define

Ctrl =df C∗

where C =df (delay(ρ);when(h ≥M+&!off []h ≤M−&!on))

The delay command delay(ρ) of C is inserted to avoid the reignition

of consecutive when statements.

+ +

50 +'

&

$

%

Design 3

The water tank can then be described by the hybrid program Tank

Tank(x) =df (h← x); WL∗

where WL =df (Up3; Down3)

and the parameter x denotes the initial water level.

Define Design3 =df signal on, off • (Tank(M)‖Ctrl)

Theorem Design2 ⊑ Design3(M)

+ +

51 +'

&

$

%

Conclusion

The objectives of this work are:

• to invent formal modeling techniques for hybrid systems using

which one can easily model discrete and continuous behaviours.

These techniques should also compositional and hierarchical and

enable the user to uniformly model a complex system at different

levels, thus solving the modeling problem of complex systems.

• to develop formal analysis, verification and synthesis techniques

to support the above architecture model of hybrid systems, and

guarantee the correctness of refinement and combination of

subsystem models using the above modeling techniques, thus

solving the constructivity problem of complex systems.

+ +

