
Integrating Specification Animation

with Specification-Based Program

Testing and Inspection for

Software Quality Assurance

Shaoying Liu

Department of Computer Science

Faculty of Computer and Information Sciences

Hosei University, Japan

Email: sliu@hosei.ac.jp

HP: http://cis.k.hosei.ac.jp/~sliu/

This work is supported by JSPS KAKENHI Grant Number 26240008.

QRS 2015, Vancouver

mailto:sliu@hosei.ac.jp

Overview

1. Challenges to Software Quality

Assurance

2. Our Solution

3. Specification Animation

4. Specification-Based Program Testing

and Inspection

5. Open Problems

6. Conclusions

7. Future Work

1. Challenges to Software

Quality Assurance

 The scale and complexity of software

development projects

 The scale of documentation

 The complexity of documentation

 The complexity of situations (e.g., requirements

changing, people moving, client complaining,

manager worrying, and developer fighting)

 The constrained development environment

Budget

Schedule

Requirements for

reliability

Developer’s

skills and

experience

Communications

 Deficiencies of techniques available for use

 Formal proof of correctness: ideal but tedious,

ineffective (for faulty programs), requiring skills (loop

invariants), error-prone, and time consuming.

Model checking: needs appropriate abstraction of a

real system to a FSM model and faces the state

explosion problem (two state space explosions for

software: initial state space and program state

space).

 Testing: can tell the existence of bugs, but cannot

tell their absence in general. Nevertheless, it is a

common practice in industry.

Review and inspection: easy to carry out, but heavily

depend on human judgment, ability, and experience.

Harsh reality

Developer:
Why are there so

many bugs remaining

in the program?

Why is my own

program difficult to

understand even by

myself?

Manager:

Why is the

project over

budget and

behind

schedule?

Client:
Why does the software

system behaves

differently from my

requirements?

6

Specification

Animation

Software

defects

２．Our Solution

Preparation Preparation

Mutual aid

3. Specification Animation

Specification animation is a technique for

dynamic and visualized demonstration of the system

behaviors defined in the specification.

Three expected effects: improving understanding of

requirements or designs, strengthening

communication, and verifying/validating

specifications.

 Specification

 Animation

Specification

(textural,

graphical)

Dynamic,

visualized

demonstration

class S1;

const; type; var; inv;

method Init;

method P1;

method P2;

method P3;

end-class;

class S2;

const; type; var; inv;

method Init;

method Q1;

method Q2;

method Q3;

end-class;

module SYSTEM;

const; type; var; inv;

process Init;

process A1;

process A2;

end-module;

module A2-decom;

const; type; var; inv;

process Init;

process B1;

process B2;

process B3;

end-module;

A1 A2

B1

B2

B3

 The structure of a SOFL specification:

 CDFDs + modules + classes

s

s

SOFL: Structured Object-oriented Formal Language

Example:

A simplified ATM specification in SOFL:

balance

w_draw

Show_

Balance

Receive_

Command
sel

amount

pass

account1

account2

Withdraw

cash

e_msg

balance

account_file1

card_id

Check_
Password

pr_meg

No. 1

 module SYSTEM_ATM;

 type

 Account = composed of

 account_no: nat

 password: nat

 balance: real

 end

 var

 account_file: set of Account;

 inv

 forall[x: account_file] | x.balance >= 0;

 behav CDFD_No1;
 …

process Withdraw(amount: real, account1: Account)

 e_msg: string | cash: real

 ext wr account_file: set of Account

 pre account1 inset account_file

 post if amount <= account1.balance

 then

 cash = amount and

 let Newacc =

 modify(account1, balance -> account1.balance – amount)

 in

 account_file = union(diff(~account_file, {account1}), {Newacc})

 else

 e_meg = "The amount is over the limit. Reenter your amount.")

comment

…

end_process;

end_module

Basic idea of SOFL specification

animation for verification and validation

{withdraw_comm}[Receive_Command, Check_Password, Withdraw]{cash}

{withdraw_comm}[Receive_Command, Check_Password, Withdraw]{err2}

{withdraw_comm}[Receive_Command, Check_Password]{err1}

{withdraw_comm}[Receive_Command, Check_Password, Show_Balance]{balance}

{balance_comm}[Receive_Command, Check_Password, Withdraw]{cash}

{balance_comm}[Receive_Command, Check_Password, Withdraw]{err2}

{balance_comm}[Receive_Command, Check_Password]{err1}

{balance_comm}[Receive_Command, Check_Password, Show_Balance]{balance}

Testing-Based Animation

Approach

Steps of Animation:

Step1: Deriving system functional scenarios

Step2: Generating test cases

Step3: Carrying out animation for each scenario

 using the test cases.

Animation of a single scenario

{withdraw_comm}[Receive_Command11, Check_Password11, Withdraw11]{cash}

{withdraw_comm}[Receive_Command11, Check_Password11, Withdraw11]{cash}

Animation of a single scenario

{withdraw_comm}[Receive_Command11, Check_Password11, Withdraw11]{cash}

Animation of a single scenario

{withdraw_comm}[Receive_Command11, Check_Password11, Withdraw11]{cash}

Animation of a single scenario

Test case generation for

processes (operations)

A test case is composed of a test datum and

the corresponding expected result.

S(Siv, Sov)[Spre, Spost]
input output

A specific method for test case

generation

Functional Scenario-Based Test Case

Generation:

a strategy for “divide and conquer’’

process A(x: int) y: int

pre x > 0

post (x > 10 => y = x + 1) and

 (x <= 10 => y = x – 1)

end_process

f_1

f_2

…

f_n

A set of functional scenarios

Overall idea:

Functional scenario:

Apre ∧ Gi ∧ Di

(i=1,…,n)

Derivation

Definition (FSF): Let

Spost ≡ (G₁ ∧ D₁) ∨ (G₂ ∧ D₂) ∨ ⋅⋅⋅ ∨

 (Gn ∧ Dn),

where Gi is a guard condition and

 Di is a defining condition, i = 1,…,n.

Then, a functional scenario form (FSF) of S is:

(Spre ∧ G₁ ∧ D₁) ∨ (Spre ∧ G₂ ∧ D₂) ∨ ⋅⋅⋅ ∨

(Spre ∧ Gn ∧ Dn)

where

fi = Spre ∧ Gi ∧ Di is called a

 functional scenario (for generating test cases)

Test case generation criterion:

Let operation S have an FSF :
(Spre ∧ G₁ ∧ D₁) ∨ (Spre ∧ G₂ ∧ D₂) ∨ ⋅⋅⋅ ∨
(Spre ∧ Gn ∧ Dn), where (n ≥ 1).

Let T be a test set for S. Then, T must satisfy

the condition

 (∀i∈{1,...,n}∃t∈T ⋅ Spre(t) ∧ Gi(t) ∧ Di(t))) and

 ∃t∈T ⋅ ¬ Spre(t)

where ¬ Spre(t) describes an exceptional

situation.

Example

A process specification in SOFL:

process ChildTicketDiscount(a: int, np: int) ap: int

pre a > 0 and np > 1

post (a > 12 => ap = np) and

 (a <= 12 => ap = np – np * 0.5)

end_process

 where a = age, ap = actual price, np =normal

price

 Two functional scenarios and one exception

can be derived from this formal specification:

(1) a > 0 and np > 1 and a > 12 and ap = np

(2) a >0 and np > 1 and a <= 12 and

 ap = np – np * 0.5

(3) a <= 0 or np <= 1 and anything

where anything means that anything can

happen when the pre-condition is violated.

Test case generation

Test cases satisfying functional scenarios:

t1 = {(a, 15), (np, 100), (ap, 100)}

t2 = {(a, 10), (np, 100), (ap, 50)}

Test case violating the pre-condition

(exceptional test case):

t3 = {(a, 0), (np, 200), (ap, 100)}

Test case generation within a

system functional scenario

{withdraw_comm}[Receive_Command11, Check_Password11, Withdraw11]{cash}

4. Specification-Based Program

Testing and Inspection

S P
 Transformation

Specification Program

 Testing

 What to do How to do it

 S ⊑ P Goal of testing:
P is a refinement of S

Steps of Specification-Based Testing

Three steps:

No. 1 Generate test cases based on the

 specification (reuse the test cases

 generated for specification animation)

No. 2 Run the program with the test cases.

No. 3 Analyze test results to determine

 whether the program contains bugs.

Test Strategy

①Ensure that all of the representative

program paths are traversed.

②Ensure that all of the traversed program

paths are correct.

Ideal Effect of the Testing

Press a Button

 x y z
case1 3 5 2

case3 9 3 35
case2 0 4 9

……

Method(int x, int y, int z){
int w;
if(x < y)
{
 w = y/x;
 while(w < z)
 {
 …
 }
} else {
 …
}
}

Adequate test cases

……

Next

Techniques for implementing

the test strategy

① Effective methods for test case generation

based on formal specifications.

② Combination of functional scenario-based

testing and inspection.

③ Combination of functional scenario-based

testing and Hoare logic

① Effective methods for test case generation

based on formal specifications.

A) Functional scenario-based test case generation

method

B) “Vibration” test case generation method

 Program

 Satisfy?

Specification (in SOFL)
process A(x: int) y: int

pre x > 0

post (x > 10 => y = x + 1) and

 (x <= 10 => y = x – 1)

end_process

int A(int x) {

If (x > 0) {

 if (x > 10) y := x * 1;

 else y := x – 1;

 return y; }

 else System.out.println(“the

 pre is violated”) }

f_1

f_2

…

f_n

p_1

p_2

…

p_m
…

M Functional scenarios Program paths

Scenario-based testing: a strategy for ``divide and conquer’’

Functional scenario:

Apre ∧Gi ∧Di

(i=1,…,n)

 C1

 C2 C3 C4

 C5 C6

 C7

statement

process A(x: int) y: int

pre x > 0

post (x > 10 => y = x + 1) and

 (x <= 10 => y = x – 1)

end_process

f_1

f_2

…

f_n

Functional scenarios

Derivation

Specification:
Program:

Definition (FSF): Let

Spost ≡ (G₁ ∧ D₁) ∨ (G₂ ∧ D₂) ∨ ⋅⋅⋅ ∨

 (Gn ∧ Dn),

where Gi is a guard condition and

 Di is a defining condition, i = 1,…,n.

Then, a functional scenario form (FSF) of S is:

(Spre ∧ G₁ ∧ D₁) ∨ (Spre ∧ G₂ ∧ D₂) ∨ ⋅⋅⋅ ∨

(Spre ∧ Gn ∧ Dn)

where

fi = Spre ∧ Gi ∧ Di is called a functional scenario

Spre∧Gi is called a test condition

Test case generation criterion:

Let operation S have an FSF :
(Spre ∧ G₁ ∧ D₁) ∨ (Spre ∧ G₂ ∧ D₂) ∨ ⋅⋅⋅ ∨
(Spre ∧ Gn ∧ Dn), where (n ≥ 1).

Let T be a test set for S. Then, T must satisfy

the condition

 (∀i∈{1,...,n}∃t∈T ⋅ Spre(t) ∧ Gi(t))) and

 ∃t∈T ⋅ ¬ Spre(t)

where ¬ Spre(t) describes an exceptional

situation.

Test oracle for test result analysis

in the scenario-based testing

Definition: Let Spre ∧ G∧ D be a functional

scenario and T be a test set generated from its

test condition Spre ∧ G. If the condition

 ∃t∈T ⋅ Spre(t) ∧ G(t)∧ ¬ D(t, P(t))

holds, it indicates that a bug in program

P is found by t (also by T).

A “Vibration” method for test set

generation

Let E₁(x₁,x₂,...,xn) R E₂(x₁,x₂,...,xn) denote that

expressions E₁ and E₂ have relation R, where

x₁,x₂,...,xn are all input variables involved in

these expressions.

Question: how can test cases be generated based

on the relation so that they can quickly cover all of the

paths implementing the functional scenario involving

the relation in the specification?

V-Method:

We first produce values for x₁,x₂,...,xn such that

the relation E₁(x₁,x₂,...,xn) R E₂(x₁,x₂,...,xn)

holds with an initial “distance” between E₁ and

E₂, and then repeatedly create more values for

the variables such that the relation still holds but

the “distance” between E₁ and E₂ “vibrates”

(changes repeatedly) between the initial

“distance” and the maximum “distance”.

E1 E2

E1 E2

E1 E2

E1 E2

E1 E2

E1 E2

E1 E2

E1 E2

-60 -45 -30 -15 0 15 30 45 60

Example: E1 > E2

(2) Combination of functional scenario-based

testing and inspection.

 Step 1: Generate a test case.

 Step 2: Execute the program to obtain a

 traversed path.

 Step 3: Inspect the traversed path based on

 the corresponding functional scenario

 in the specification.

Example
process ChildTicketDiscount(a: int, np: int) ap: int

pre a > 0 and np > 1

post (a > 12 => ap = np) and

 (a <= 12 => ap = np – np * 0.5)

end_process

Two functional scenarios and one exception:

(1) a > 0 and np > 1 and a > 12 and ap = np

(2) a >0 and np > 1 and a <= 12 and

 ap = np – np * 0.5

(3) a <= 0 or np <= 1 and anything (exception)

Implementation of the specification

int ChildTicketDiscount(int a, int np) {

 (1) If (a > 0 && np > 1) {

 (2) if (a > 12)

 (3) ap := np;

 (4) else ap := np ∗∗ 2 – np – np ∗ 0.5;

 (5) return ap;}

 (6) else System.out.println(``the

 precondition is violated.”)

}

Test case and test result
test case: a = 5, np = 2

test condition: a > 0 and np > 1 and a <= 12

functional scenario: a > 0 and np > 1 and

 a <= 12 and ap = np – np ∗ 0.5

traversed program path:

 [(1)(2)′(4)(5)]

That is:

 (1) a > 0 && np > 1)

 (2)’ a <= 12

 (4) ap := np ∗∗ 2 – np – np ∗ 0.5

 (5) return ap

Checklist derived from the functional scenario:

 (1) Is the pre-condition a > 0 and np > 1

 implemented correctly?

 (2) Is the guard condition a <= 12 implemented

 correctly?

 (3) Is the defining condition ap = np – np * 0.5

 implemented correctly?

By trying to answer the above questions,

the traversed path can be inspected.

(3) Combination of functional scenario-based

testing and Hoare logic:

process A(a: int) b: int

pre Pre_A

post Post_A

Program_A

{Pre_A}

{Pre_Path1}

Path1

{Post_A}

Prove

Pre_A =>

Pre_Path1
Determine the

correctness of

Path1

(either by automatic

testing or

formal proof)

From Pre_A and Post_A

generat a test case (a = 2);

Execute program_A to obtain a

traversed path

Path1

Relevant axioms derived from Hoare logic:

(1) {Q(E/x)} x := E {Q} (axiom for assignment)

(2) {Q} S {Q} where S is one of the non-changing

 segments, such as the following two:

 “return’’ statement,

 printing statement.

(3) {S∧Q} S {Q} where S is a decision, condition, or
predicate expression, which is used in an if-then-
else statement or a while-loop.

Example
test case: a = 5, np = 2

test condition: a > 0 and np > 1 and a <= 12

functional scenario: a > 0 and np > 1 and

 a <= 12 and ap = np – np ∗ 0.5

traversed program path:

 [(1)(2)′(4)(5)]

output ap = 1

test result evaluation:

a > 0 and np > 1 and a <= 12 and not

 ap = np – np ∗ 0.5 (false)

No bug is found in this test, although a bug exists on the path.

Step1: Form the path triple:

{a > 0 and np > 1}

[a > 0 && n_f > 1, a <= 12,

 ap := np ∗∗ 2 – np – np ∗ 0.5,

 return ap]

{a <= 12 and ap = np - np ∗ 0.5}

Step 2: Derive the asserted path by applying

 the axiom for assignment or non-

 change segments:

{a > 0 and np >1}

{a > 0 and np > 1 and

a <=12 and np ∗∗ 2 - np - np ∗ 0.5 = np - np ∗ 0.5}

a > 0 && np > 1

{a <= 12 and np∗∗ 2 – np – np ∗ 0.5 = np - np ∗ 0.5}

 a <= 12

{a <= 12 and np∗∗ 2 – np – np ∗ 0.5 = np - np ∗ 0.5}

 ap := np ∗∗ 2 – np – np ∗ 0.5

{a <= 12 and ap = np - np ∗ 0.5}

 return ap

{a <= 12 and ap = np - np ∗ 0.5}

Derived pre-condition

Step 3: Verify the validity of the implication:

 a > 0 and np >1 =>

 a > 0 and np > 1 and

 a <=12 and

 np ∗∗ 2 - np - np ∗ 0.5 = np - np ∗ 0.5

Methods for verification:

(1)Automatic testing (effective when the implication does not hold,

but may not be effective to give a conclusion when the

implication holds)

(2)Formal proof (effective when the implication holds, but full

automation may be impossible)

Example of verification by testing

Let a = 1

 np = 4.

Then, the implication becomes

(a > 0 and np >1)[1/a, 4/np] =>

 (a > 0 and np > 1 and

 a <=12 and

 np ∗∗ 2 - np - np ∗ 0.5 = np - np ∗ 0.5)[1/a, 4/np]

Result: (true => false) <=> fase

5. Open Problems
(1) There is a lack of a theory and method for

generating adequate test cases only based on

specifications to cover all of the representative

paths for any given program (necessary to consider

both the program and specification structures, but

how?)

(2) How to avoid human impact on the effectiveness of

program inspection (automatic inspection?)

(3) How to deal with the program path explosion

problem ?(when the program contains many nested

conditional or iterative constructs)

6. Conclusions
(1) Specification animation can prevent errors and help

set up a foundation for implementation and
specification-based testing and inspection.

(2) Specification-based testing can be used to check
automatically whether a program is consistent with
its specification, but it needs review/inspection to
enhance its effectiveness in reliability assurance.

(3) Integration of specification animation, testing, and
inspection can help reduce time and cost in
verification and validation.

7. Future Work

(1) Address the open problems mentioned
previously.

(2) Explore techniques for full automation of the
integrated method for verification and
validation.

(3) Conduct experiments to evaluate the
performance of the integrated method.

 Thank You !

