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Test Oracle 

• A mechanism or procedure against which 

the computed outputs could be verified 
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Example 

   To find the roots of the following polynomial 

    x**100 + 3*(x**99) – x**98+ ….. +5 

 

    Suppose the solutions for x are: 2.0, 6.5, .. 
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Example 

• sin function 

– sin(0o )=0  

– sin(30o)=0.5 

• Suppose the program returns:                   

          sin(29.8o )=0.51234   incorrect 

          sin(29.8o )=0.49876   correct? 
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Example 

• Shortest path problem SP(G, a, b) 

• Suppose the program returns: 

– |SP(G, a, a)| = 5       incorrect 

– |SP(G, a, b)| = 10 where a and b are neighbours 

– |SP(G, a, b)| = 1,000,001    correct or incorrect? 
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Non-Testable Programs 

• Absence of test oracle  

• Too expensive to apply test oracle 
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Intuition of Metamorphic Testing 

Though we do not know the correctness of the 

output of any individual input 

 

We may know the relation between some related 

inputs and their outputs 
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Example 

• Suppose sin(29.8o ) returns 0.49876  

• sin function has the following property 

– sin(x)= sin(x+360)  

• Compute 29.8o + 360o = 389.8o  

• Execute the program with 389.8o as an input 

• Check whether sin(29.8o ) = sin(389.8o ) 
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Metamorphic Testing (A Simplified Form) 

• Define source (initial) test cases using some test 

case selection strategies 

• Identify some properties of the problem (referred 

to as the metamorphic relations) 

• Construct follow-up test cases from the source test 

cases with reference to the identified metamorphic 

relations  

• Verify the metamorphic relations 
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Categories of Research in MT 

• Applications of MT to specific application 

domains with oracle problem 

• Integration of MT with other software 

analysis and testing methods 

• Theory for MT 
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Applications of MT 
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Successful Applications of MT 

• Bioinformatics programs 

• Embedded systems 

• Machine learning software 

• Optimization systems 

• Compilers 

• Simulation systems 

• …. 
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Interesting Results 

Reveal undetected faults  

•Siemens suite 

– print_token, schedule, and schedule_2  

•Compilers 

•Machine learning tool – Weka 

•……. 
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A Recent Paper 

• Compiler Validation via Equivalence Modulo 

Inputs, V. Le, M. Afshari and Z. Su, Proceedings 

of 35th ACM SIGPLAN Conference on 

Programming Language Design & Implementation 

(PLDI ’14), 216–226, 2014.  

 

Best Paper Award 
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Testing Compilers 

Their testing method is a MT method 

 

Its MR is: 

If  programs P and P’ are equivalent with respect to input I,  

then their object codes are equivalent with respect to I. 

 

http://blog.regehr.org.archives/1161 
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a new test case selection method! 
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Three Recent Papers 

• Metamorphic Model-Based Testing Applied on NASA 

DAT –an Experience Report, M. Lindvall, D. Ganesan, R. 

Ardal and R. E. Wiegand, ICSE 2015, 129-138. 

• Research Directions for Engineering Big Data Analytics 

Software, C. E. Otero and A. Peter, IEEE Intelligent 

Systems, 14-19, January/February 2015. 

• A Methodology for Validating Cloud Models Using 

Metamorphic Testing, A. Nunez and R. M. Hierons, 

Annals of Telecommunications, Vol. 70(3), 127-135, 

2015.  
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Integration with Other Methods 
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 Example: Spectrum Based Fault Localization 

• A statistical approach to predict how likely 

a program entity is faulty 

• Intuition 

– More likely to be faulty if executed by more 

failed test cases 

– More likely to be faulty if executed by less 

passed test cases 
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SBFL 

• Use a set of test cases with 

–  testing results of pass or fail 

–  coverage information whether a program entity 

is executed or not 

• Use a formula to predict how likely a 

program entity is faulty 
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• Tarantula 

 

 

• Risk values 

 

 

• Ranking list    
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SBFL 

An Open Problem: 

 

How to apply SBFL on non-testable programs? 
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Integration of SBFL with MT 

• test case – metamorphic test group 

• pass or failure of a test case – satisfaction or 

violation of a metamorphic test group 

• coverage by a test case – coverage by a 

metamorphic test group 
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Integration of SBFL with MT 

• Intuition 

– More likely to be faulty if executed by more 

violated metamorphic test groups 

– More likely to be faulty if executed by less non-

violated metamorphic test groups 

 

 



Example 
 1 2 3 4 5 6:MTS g g g g g g

1

2

3

4

5

6

1 1 1 1 1 1

1 0 1 1 0 1

0 0 0 1 0 0
:    :

1 1 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 1

            

s

s

s
P MS

s

s

s

   
   
   
   
   
   
   
     

  

 :RE n v n n v v

27 



Example 
 1 2 3 4 5 6:MTS g g g g g g

1

2

3

4

5

6

1 1 1 1 1 1

1 0 1 1 0 1

0 0 0 1 0 0
:    :

1 1 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 1

            

s

s

s
P MS

s

s

s

   
   
   
   
   
   
   
     

  

 :RE n v n n v v

:i i i i i

ef ep nf npA a a a a 

3 3 0 0

1 3 2 0

0 1 3 2
:

2 3 1 0

3 2 0 1

3 3 0 0

MA

 
 
 
 
 
 
 
  
 

28 



• Tarantula 

 

 

• Risk values 
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Other Successful Integrations 
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One Recent Paper 

• A Methodology for Validating Cloud Models Using 

Metamorphic Testing, A. Nunez and R. M. Hierons, 

Annals of Telecommunications, Vol. 70(3), 127-135, 

2015.  
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Theory for Metamorphic Testing 
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Metamorphic Testing 

• Some reminders 

–  MRs not restricted to identity relations and 

numeric relations 

– Multiple executions  

– Follow-up test cases may depend on the outputs 

of the source test cases 

– MT is applicable even if test oracle exists 
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Metamorphic Relations 
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Metamorphic Relations 

• Identification of MRs 

• Prioritization of MRs 

• Fault Detection Effectiveness of MRs 
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 Identification of MRs 

• MT can be automated except the 

identification of MRs 
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Identification of MRs 

• Is it feasible to identify or generate MRs? 
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A Simple and Intuitive Approach 

• Select an input 

• Modify it, hopefully that the relevant 

change of output will be somehow 

predictable.  

    If yes, any generalisation? 

               If yes, then identify an MR 
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 Identification of MRs 

Various approaches 

•Machine learning (Columbia; Colorado State) 

•Data mutation (Oxford Brookes) 

•Coding (Peking) 

•Composition (Swinburne) 

•Category-choice framework (HK Poly; Wuhan) 

•………… 

•…….. 

 



Generation by Composition 

• Generation of new MRs from existing MRs 

by composition 
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Example 

• Shortest path problem: SP(G, a, b) 

• Suppose we have the following MRs 

– MRA: |SP(G, a, b)| = |SP(G, b, a)|. 

– MRB: |SP(G, a, b)| = |SP(G’, a’, b’)|. 

• By composition, a new MR is defined as 

– MRAB: |SP(G, a, b)| = |SP(G’, b’, a’)|. 

41 



42 

Prioritization of MRs 

Consider sin(x) 

 

MR1: sin(x) =  sin(x + 2 ) 

MR2: sin(x) = -sin(x + ) 

MR3: sin(-x)= -sin(x) 

MR4: sin(x) =  sin(-x) 

MR5: sin(x) = -sin(2  - x) 

… 
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 Priorization Approaches 

• Usage profile 

• Algorithm  
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Usage Profile 

 Restricted use of programs – interested in a 

subset of properties 
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Usage Profile 

  sin(x) 

 Electrical Engineers 

 sin(x) =  sin(x + 2 ) 

 Land Surveyors 

 sin(-x)= -sin(x) 

 sin(x) =  sin(-x) 
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Algorithm 

 A problem may be solved by more than one 

algorithm – sorting, adaptive random testing 

 An algorithm may be implemented in 

different ways 
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Example 

 Shortest Path problem: 

    SP(G, a, b) using forward expansion 

 

  A 

B 
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Example 

• |SP(G, a, b)| = |SP(G’, a’, b’)| 

• |SP(G, a, b)| =  |SP(G, a, c)| +|SP(G, c, b)| 

• |SP(G, a, b)| = |SP(G, b, a)| 
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Fault-Detection Effectiveness 

 

 

How many MRs are required? 
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Empirical Observation: 

         a few diverse MRs  



x 

f(x) 
f(x) = axn + bxn-1 + … 
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Is MT a Black-Box Method? 
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Example 
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Example 

• MR1:       sin(-x) = -sin(x) 

 

• MR2:       sin(x) = sin(x + 2 ) 
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End-User Software Engineering 

 Limited knowledge of testing 

 Unaccessibility to testing tools 

 Need a testing method 

 easy to learn 

 easy to use 

 easy to automate 
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End-User Software Engineering 

 Source test case selection strategy – any 

available technique or test suite; otherwise 

special values, random or ad hoc selection 

 Selection of MRs –  

 usage profile 

 end-user’s domain knowledge 

 end-user’s code knowledge 
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Diversity 

 

the key underlying concept in test 

case selection strategies 
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Diversity 

• Success of MT in revealing faults 

undetected by other conventional 

testing methods 

• Diverse MRs in MT 
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Diversity 

 

 

underlying concept in software testing 
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Conclusion 

 

 

Simplicity 
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Thanks! 
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