
1

Metamorphic Testing:

A Simple Method for Testing

Non-Testable Programs

Tsong Yueh Chen

tychen@swin.edu.au

Swinburne University of Technology

Australia

2

Test Oracle

• A mechanism or procedure against which

the computed outputs could be verified

3

Example

 To find the roots of the following polynomial

 x**100 + 3*(x**99) – x**98+ ….. +5

 Suppose the solutions for x are: 2.0, 6.5, ..

4

Example

• sin function

– sin(0o)=0

– sin(30o)=0.5

• Suppose the program returns:

 sin(29.8o)=0.51234 incorrect

 sin(29.8o)=0.49876 correct?

5

Example

• Shortest path problem SP(G, a, b)

• Suppose the program returns:

– |SP(G, a, a)| = 5 incorrect

– |SP(G, a, b)| = 10 where a and b are neighbours

– |SP(G, a, b)| = 1,000,001 correct or incorrect?

6

Non-Testable Programs

• Absence of test oracle

• Too expensive to apply test oracle

7

Intuition of Metamorphic Testing

Though we do not know the correctness of the

output of any individual input

We may know the relation between some related

inputs and their outputs

8

Example

• Suppose sin(29.8o) returns 0.49876

• sin function has the following property

– sin(x)= sin(x+360)

• Compute 29.8o + 360o = 389.8o

• Execute the program with 389.8o as an input

• Check whether sin(29.8o) = sin(389.8o)

9

Metamorphic Testing (A Simplified Form)

• Define source (initial) test cases using some test

case selection strategies

• Identify some properties of the problem (referred

to as the metamorphic relations)

• Construct follow-up test cases from the source test

cases with reference to the identified metamorphic

relations

• Verify the metamorphic relations

10

Categories of Research in MT

• Applications of MT to specific application

domains with oracle problem

• Integration of MT with other software

analysis and testing methods

• Theory for MT

11

Applications of MT

12

Successful Applications of MT

• Bioinformatics programs

• Embedded systems

• Machine learning software

• Optimization systems

• Compilers

• Simulation systems

• ….

13

Interesting Results

Reveal undetected faults

•Siemens suite

– print_token, schedule, and schedule_2

•Compilers

•Machine learning tool – Weka

•…….

14

A Recent Paper

• Compiler Validation via Equivalence Modulo

Inputs, V. Le, M. Afshari and Z. Su, Proceedings

of 35th ACM SIGPLAN Conference on

Programming Language Design & Implementation

(PLDI ’14), 216–226, 2014.

Best Paper Award

15

Testing Compilers

Their testing method is a MT method

Its MR is:

If programs P and P’ are equivalent with respect to input I,

then their object codes are equivalent with respect to I.

http://blog.regehr.org.archives/1161

16

a new test case selection method!

17

Three Recent Papers

• Metamorphic Model-Based Testing Applied on NASA

DAT –an Experience Report, M. Lindvall, D. Ganesan, R.

Ardal and R. E. Wiegand, ICSE 2015, 129-138.

• Research Directions for Engineering Big Data Analytics

Software, C. E. Otero and A. Peter, IEEE Intelligent

Systems, 14-19, January/February 2015.

• A Methodology for Validating Cloud Models Using

Metamorphic Testing, A. Nunez and R. M. Hierons,

Annals of Telecommunications, Vol. 70(3), 127-135,

2015.

18

Integration with Other Methods

19

 Example: Spectrum Based Fault Localization

• A statistical approach to predict how likely

a program entity is faulty

• Intuition

– More likely to be faulty if executed by more

failed test cases

– More likely to be faulty if executed by less

passed test cases

20

SBFL

• Use a set of test cases with

– testing results of pass or fail

– coverage information whether a program entity

is executed or not

• Use a formula to predict how likely a

program entity is faulty

Example
 1 2 3 4 5 6:TS t t t t t t

1

2

3

4

5

6

1 1 1 1 1 1

1 0 1 1 0 0

0 0 0 1 0 0
: :

0 1 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 1

s

s

s
P MS

s

s

s

 :RE p p p p f f

21

Example
 1 2 3 4 5 6:TS t t t t t t

1

2

3

4

5

6

1 1 1 1 1 1

1 0 1 1 0 0

0 0 0 1 0 0
: :

0 1 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 1

s

s

s
P MS

s

s

s

 :RE p p p p f f

:i i i i i

ef ep nf npA a a a a

2 4 0 0

0 3 2 1

0 1 2 3
:

1 3 1 1

2 3 0 1

2 4 0 0

MA

22

• Tarantula

• Risk values

• Ranking list

() / ()

i i i

ef ef ep

T i i i i i i i

ef nf ef nf ep np

a a a
R s

a a a a a a

1 2 4 1
0 0

2 5 7 2

 1 2 3 4 5 6s s s s s s

5 4 1 6 2 3s s s s s s

23

24

SBFL

An Open Problem:

How to apply SBFL on non-testable programs?

25

Integration of SBFL with MT

• test case – metamorphic test group

• pass or failure of a test case – satisfaction or

violation of a metamorphic test group

• coverage by a test case – coverage by a

metamorphic test group

26

Integration of SBFL with MT

• Intuition

– More likely to be faulty if executed by more

violated metamorphic test groups

– More likely to be faulty if executed by less non-

violated metamorphic test groups

Example
 1 2 3 4 5 6:MTS g g g g g g

1

2

3

4

5

6

1 1 1 1 1 1

1 0 1 1 0 1

0 0 0 1 0 0
: :

1 1 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 1

s

s

s
P MS

s

s

s

 :RE n v n n v v

27

Example
 1 2 3 4 5 6:MTS g g g g g g

1

2

3

4

5

6

1 1 1 1 1 1

1 0 1 1 0 1

0 0 0 1 0 0
: :

1 1 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 1

s

s

s
P MS

s

s

s

 :RE n v n n v v

:i i i i i

ef ep nf npA a a a a

3 3 0 0

1 3 2 0

0 1 3 2
:

2 3 1 0

3 2 0 1

3 3 0 0

MA

28

• Tarantula

• Risk values

• Ranking list

() / ()

i i i

ef ef ep

T i i i i i i i

ef nf ef nf ep np

a a a
R s

a a a a a a

1 1 2 3 1
0

2 4 5 5 2

 1 2 3 4 5 6s s s s s s

5 1 6 4 2 3s s s s s s

29

30

Other Successful Integrations

31

One Recent Paper

• A Methodology for Validating Cloud Models Using

Metamorphic Testing, A. Nunez and R. M. Hierons,

Annals of Telecommunications, Vol. 70(3), 127-135,

2015.

32

Theory for Metamorphic Testing

33

Metamorphic Testing

• Some reminders

– MRs not restricted to identity relations and

numeric relations

– Multiple executions

– Follow-up test cases may depend on the outputs

of the source test cases

– MT is applicable even if test oracle exists

34

Metamorphic Relations

35

Metamorphic Relations

• Identification of MRs

• Prioritization of MRs

• Fault Detection Effectiveness of MRs

36

 Identification of MRs

• MT can be automated except the

identification of MRs

37

Identification of MRs

• Is it feasible to identify or generate MRs?

38

A Simple and Intuitive Approach

• Select an input

• Modify it, hopefully that the relevant

change of output will be somehow

predictable.

 If yes, any generalisation?

 If yes, then identify an MR

39

 Identification of MRs

Various approaches

•Machine learning (Columbia; Colorado State)

•Data mutation (Oxford Brookes)

•Coding (Peking)

•Composition (Swinburne)

•Category-choice framework (HK Poly; Wuhan)

•…………

•……..

Generation by Composition

• Generation of new MRs from existing MRs

by composition

40

Example

• Shortest path problem: SP(G, a, b)

• Suppose we have the following MRs

– MRA: |SP(G, a, b)| = |SP(G, b, a)|.

– MRB: |SP(G, a, b)| = |SP(G’, a’, b’)|.

• By composition, a new MR is defined as

– MRAB: |SP(G, a, b)| = |SP(G’, b’, a’)|.

41

42

Prioritization of MRs

Consider sin(x)

MR1: sin(x) = sin(x + 2)

MR2: sin(x) = -sin(x +)

MR3: sin(-x)= -sin(x)

MR4: sin(x) = sin(-x)

MR5: sin(x) = -sin(2 - x)

…

43

 Priorization Approaches

• Usage profile

• Algorithm

44

Usage Profile

 Restricted use of programs – interested in a

subset of properties

45

Usage Profile

 sin(x)

 Electrical Engineers

 sin(x) = sin(x + 2)

 Land Surveyors

 sin(-x)= -sin(x)

 sin(x) = sin(-x)

46

Algorithm

 A problem may be solved by more than one

algorithm – sorting, adaptive random testing

 An algorithm may be implemented in

different ways

47

Example

 Shortest Path problem:

 SP(G, a, b) using forward expansion

 A

B

48

Example

• |SP(G, a, b)| = |SP(G’, a’, b’)|

• |SP(G, a, b)| = |SP(G, a, c)| +|SP(G, c, b)|

• |SP(G, a, b)| = |SP(G, b, a)|

49

Fault-Detection Effectiveness

How many MRs are required?

50

Empirical Observation:

 a few diverse MRs

x

f(x)
f(x) = axn + bxn-1 + …

51

x

f(x)

52

53

Is MT a Black-Box Method?

54

Example

!5!3

)sin(
53 xx

xx

55

Example

• MR1: sin(-x) = -sin(x)

• MR2: sin(x) = sin(x + 2)

56

End-User Software Engineering

 Limited knowledge of testing

 Unaccessibility to testing tools

 Need a testing method

 easy to learn

 easy to use

 easy to automate

57

End-User Software Engineering

 Source test case selection strategy – any

available technique or test suite; otherwise

special values, random or ad hoc selection

 Selection of MRs –

 usage profile

 end-user’s domain knowledge

 end-user’s code knowledge

58

Diversity

the key underlying concept in test

case selection strategies

59

Diversity

• Success of MT in revealing faults

undetected by other conventional

testing methods

• Diverse MRs in MT

60

Diversity

underlying concept in software testing

61

Conclusion

Simplicity

62

Thanks!

63

References:

• Metamorphic Testing: A Literature Review, S. Segura, A.

B. Sanchez and A. Ruiz-Cortes, Technical Report ISA-15-

TR-01, University of Seville, 2015.

